複製鏈接
請複製以下鏈接發送給好友

數值積分

鎖定
數值積分,用於求定積分的近似值。在數值分析中,數值積分是計算定積分數值的方法和理論。在數學分析中,給定函數的定積分的計算不總是可行的。許多定積分不能用已知的積分公式得到精確值。
數值積分是利用黎曼積分等數學定義,用數值逼近的方法近似計算給定的定積分值。藉助於電子計算設備,數值積分可以快速而有效地計算複雜的積分。 [1] 
中文名
數值積分
外文名
Numerical Integration
拼    音
shù zhí jī fèn
屬    性
數值方法的一種
用    途
求定積分的近似值
使用方法
用被積函數抽樣值代替定積分的值
應用學科
數學

數值積分簡介

構造數值積分公式最通常的方法是用積分區間上的n 次插值多項式代替被積函數,由此導出的求積公式稱為插值型求積公式。特別在節點分佈等距的情形稱為牛頓-柯茨公式,例如梯形公式(Trapezoidal Approximations)與拋物線公式(Approximations Using Parabolas)就是最基本的近似公式。但它們的精度較差。
龍貝格算法是在區間逐次分半過程中,對梯形公式的近似值進行加權平均獲得準確程度較高的積分近似值的一種方法,它具有公式簡練、計算結果準確、使用方便、穩定性好等優點,因此在等距情形宜採用龍貝格求積公式(Rhomberg Integration)。
當用不等距節點進行計算時,常用高斯型求積公式計算,它在節點數目相同情況下,準確程度較高,穩定性好,而且還可以計算無窮積分。數值積分還是微分方程數值解法的重要依據。許多重要公式都可以用數值積分方程導出。

數值積分必要性

數值積分的必要性源自計算函數的原函數的困難性。利用原函數計算定積分的方法建立在牛頓-萊布尼茲公式之上。然而,原函數可以用初等函數表示的函數為數不多,大部分的可積函數的積分無法用初等函數表示,甚至無法有解析表達式。例如常見的正態分佈函數:
的原函數就無法用初等函數表示。
不僅如此,在很多實際應用中,只能知道積分函數在某些特定點的取值,比如天氣測量中的氣温、濕度、氣壓等,醫學測量中的血壓、濃度等等。另外,積分函數有可能是某個微分方程的解。由於很多微分方程只能數值求解,因此只能知道函數在某些點上的取值。這時是無法用求原函數的方法計算函數的積分的。
另外,當積分區域是曲面、三維形體以至於高維流形時,牛頓-萊布尼茲公式不再適用,只能使用更廣泛的格林公式斯托克斯公式,以轉化為較低維數上的積分,但只能用於少數情況。因此,只能使用數值積分計算函數的近似值。

數值積分代數精度

若式(2)對
(k=0,1,…,m)精確成立,亦即E(f)=0,而當時k=m+1時(2)不再是精確等式,則説求積公式(2)的代數精度是m。根據K.魏爾斯特拉斯的“多項式”逼近定理,就一般的連續函數f而言,m越大E(f)越小,因此可以用代數精度的高低説明求積公式的優劣。

數值積分矩形法

用一系列矩形的和來逼近積分的精確值。 [2] 
矩形法是一種常見的數值積分方法,用來計算一維定積分的近似值。矩形法的主要思想是將積分區間I=[a,b]分割成許多足夠小的分區間的總和:
,使得能夠假設積分函數f在各個小區間
上的取值變化不大。這時,可以在每個分區間上取一個代表性的點
(稱為節點),並將分區間的長度乘以積分函數在這一點上的值,以近似得到函數在這一段小區間上的積分。直觀上來看,就是取一個矩形,用它的面積來代替積分函數的曲線在這一小段區間上圍出來的曲邊梯形的面積。總體上,將所有這樣的矩形面積加起來(這個和稱為黎曼和),就近似地等於函數在這個區間上的定積分。
根據黎曼積分的定義,只要區間被分得足夠精細,那麼這樣的分割所得到的黎曼和會無限趨近於函數的積分。

數值積分公式

根據每個小區間中節點的選取方式,可以得到不同的數值積分公式。
上矩形公式:取每個小區間中的“最高點”(f的最大值或上確界)作為節點。
下矩形公式:取每個小區間中的“最低點”(f的最小值或下確界)作為節點。
中矩形公式:取每個小區間中央的一點作為節點。

數值積分插值法

另一種數值積分的思路是用一個容易計算積分而又與原來的函數“相近”的函數來代替原來的函數。這裏的“相近”是指兩者在積分區間上定積分的值比較接近。最自然的想法是採用多項式函數。比如説,給定一個函數f後,在積分區間I=[a,b]中取
,就可以對原來的函數進行拉格朗日插值。得到拉格朗日插值多項式以後,計算這個多項式的積分。 [2] 
其中Li是拉格朗日插值的基本多項式。

數值積分牛頓公式

牛頓-柯特斯公式是一種插值型公式。假設I=[a,b]中取
,可以寫成: [1] 
其中的
如果n=1,那麼牛頓-柯特斯公式就變成梯形公式(取每個小區間兩端點,做成梯形,梯形的值也和矩形一樣,趨於原來的函數的積分)。

數值積分高斯型

一類具有最高的代數精度的內插型求積公式(表1)。
公式 公式
求積公式含有2(m+1)個自由參數(xjAj),恰當選擇這些參數,能使公式的代數精度達到2m+1。高斯求積理論中的一個基本定理斷言:只要把結點x0,x1,…,xm取為區間[α,b]上關於權函數ω(x)的m+1次正交多項式的零點,內插型求積公式即達到最高代數精度2m+1。這裏[α,b] 可以是有限或無限區間,ω(x)為取正值的權函數。許多有關數值積分的論著都列舉出各種高斯型公式的結點和係數的數值。可以證明:對每個連續函數,當結點個數趨於無窮時,高斯型公式所給出的近似值序列收斂到相應積分的精確值,而牛頓-科茨公式則不具有這種性質。
維數值積分的主要方法有蒙特卡羅法代數方法和數論方法。
參考資料
  • 1.    李慶揚. 數值分析[M]. 清華大學出版社有限公司, 2001.
  • 2.    丁麗娟, 程杞元. 數值計算方法[J]. 1997.