複製鏈接
請複製以下鏈接發送給好友

牛頓環

鎖定
牛頓環,又稱“牛頓圈”。在光學上,牛頓環是一個薄膜干涉現象。光的一種干涉圖樣,是一些明暗相間的同心圓環。例如用一個曲率半徑很大的凸透鏡的凸面和一平面玻璃接觸,在日光下或用白光照射時,可以看到接觸點為一暗點,其周圍為一些明暗相間的彩色圓環;而用單色光照射時,則表現為一些明暗相間的單色圓圈。這些圓圈的距離不等,隨離中心點的距離的增加而逐漸變窄。它們是由球面上透射和平面上反射的光線相互干涉而形成的干涉條紋
中文名
牛頓環
外文名
Newton's ring
別    名
牛頓圈
提出者
牛頓
提出時間
1675年
適用領域
光的波動説
應用學科
物理

目錄

牛頓環定義

圖1 牛頓環結構示意圖 圖1 牛頓環結構示意圖
在牛頓環的示意圖1上,下部為平面玻璃(平晶),A為平凸透鏡,其曲率中心為O,在二者中部接觸點的四周則是平面玻璃與凸透鏡所夾的空氣氣隙。當平行單色光垂直入射於凸透鏡的平表面時。在空氣氣隙的上下兩表面所引起的反射光線形成相干光。光線在氣隙上下表面反射(一是在光疏媒質面上反射,一是在光密媒質面上反射)。
平凸透鏡和平面透鏡之間的空間薄膜的距離為e,平凸透鏡曲率半徑為R。

牛頓環原理

常用牛頓環裝置 常用牛頓環裝置
一種光的干涉圖樣。是牛頓在1675年首先觀察到的。將一塊曲率半徑較大的平凸透鏡放在一塊玻璃平板上,用單色光照射透鏡與玻璃板,就可以觀察到一些明暗相間的同心圓環。圓環分佈是中間疏、邊緣密,圓心在接觸點O。從反射面看到的牛頓環中心是暗的,從透射面看到的牛頓環中心是明的。若用白光入射.將觀察到彩色圓環。凸透鏡的凸球面和玻璃平板之間形成一個厚度不均勻變化的圓尖劈形空氣簿膜,當平行光垂直射向平凸透鏡時,從尖劈形空氣膜上、下表面反射的兩束光相互疊加而產生干涉。同一半徑的圓環處空氣膜厚度相同,上、下表面反射光程差相同,因此使干涉圖樣呈圓環狀。
牛頓在光學中的一項重要發現就是"牛頓環"。這是他在進一步考察胡克研究的肥皂泡薄膜的色彩問題時提出來的。

牛頓環牛頓環實驗

牛頓環實驗是這樣的:取來兩塊玻璃體,一塊是14英尺望遠鏡用的平凸鏡,另一塊是50英尺左右望遠鏡用的大型雙凸透鏡。在雙凸透鏡上放上平凸鏡,使其平面向下,當把玻璃體互相壓緊時,就會在圍繞着接觸點的周圍出現各種顏色,形成色環。於是這些顏色又在圓環中心相繼消失。在壓緊玻璃體時,在別的顏色中心最後現出的顏色,初次出現時看起來像是一個從周邊到中心幾乎均勻的色環,再壓緊玻璃體時,這色環會逐漸變寬,直到新的顏色在其中心現出。如此繼續下去,第三、第四、第五種以及跟着的別種顏色不斷在中心現出,併成為包在最內層顏色外面的一組色環,最後一種顏色是黑點。反之,如果抬起上面的玻璃體,使其離開下面的透鏡,色環的直徑就會偏小,其周邊寬度則增大,直到其顏色陸續到達中心,後來它們的寬度變得相當大,就比以前更容易認出和訓別它們的顏色了。
圖2 牛頓環現象 圖2 牛頓環現象
牛頓測量了六個環的半徑(在其最亮的部分測量),發現這樣一個規律:亮環半徑的平方值是一個由奇數所構成的算術級數,即1、3、5、7、9、11,而暗環半徑的平方值是由偶數構成的算術級數,即2、4、6、8、10、12。例凸透鏡與平板玻璃在接觸點附近的橫斷面水平軸畫出了用整數平方根標的距離:√1=1√2=1.41,√3=1.73,√4=2,√5=2.24等等。在這些距離處,牛頓觀察到交替出現的光的極大值極小值從圖2中看到,兩玻璃之間的垂直距離是按簡單的算術級數,1、2、3、4、5、6……增大的。這樣,知道了凸透鏡的半徑後,就很容易算出暗環和亮環處的空氣層厚度,牛頓當時測量的情況是這樣的:用垂直入射的光線得到的第一個暗環的最暗部分的空氣層厚度為1/189000英寸,將這個厚度的一半乘以級數1、3、5、7、9、11,就可以給出所有亮環的最亮部分的空氣層厚度,即為1/178000,3/178000,5/178000,7/178000……它們的算術平均值2/178000,4/178000,6/178000……等則是暗環最暗部分的空氣層厚度。
牛頓環裝置產生的干涉暗環半徑為√(kRλ) ,其中k=0,1,2……
牛頓還用水代替空氣,從而觀察到色環的半徑將減小。他不僅觀察了白光的干涉條紋,而且還觀察了單色光所呈現的明間相間的干涉條紋。
牛頓環裝置常用來檢驗光學元件表面的準確度.如果改變凸透鏡和平板玻璃間的壓力,能使其間空氣薄膜的厚度發生微小變化,條紋就會移動。用此原理可以精密地測定壓力或長度的微小變化。
牛頓環實驗儀器 牛頓環實驗儀器
按理説,牛頓環乃是光的波動性的最好證明之一,可牛頓卻不從實際出發,而是從他所信奉的微粒説出發來解釋牛頓環的形成。他認為光是一束通過窨高速運動的粒子流,因此為了解釋牛頓環的出現,他提出了一個“一陣容易反射,一陣容易透射”的複雜理論。根據這一理論,他認為;“每條光線在通過任何折射面時都要進入某種短暫的狀態,這種狀態在光線得進過程中每隔一定時間又復原,並在每次復原時傾向於使光線容易透過下一個折射面,在兩次復原之間,則容易被下一個折射面的反射。”他還把每次返回和下一次返回之間所經過的距離稱為“陣發的間隔”。實際上,牛頓在這裏所説的“陣發的間隔”就是波動中所説的“波長”。為什麼會這樣呢?牛頓卻含糊地説:“至於這是什麼作用或傾向,它就是光線的圓圈運動或振動,還是介質或別的什麼東西的圓圈運動或振動,我這裏就不去探討了。”
牛頓環儀是由曲率半徑為R的待測平凸透鏡L和玻璃平板P疊裝在金屬框架F中構成,如圖3所示。框架邊上有三個螺釘H,用來調節L和P之間的接觸,以改變干涉條紋的形狀和位置。調節H時,螺釘不可旋得過緊,以免接觸壓力過大引起玻璃透鏡迸裂、破損。圖3為牛頓環實物圖

牛頓環論證

圖3 牛頓環儀 圖3 牛頓環儀
牛頓雖然發現了牛頓環,並做了精確的定量測定,可以説已經走到了光的波動説的邊緣,但由於過分偏愛他的微粒説,始終無法正確解釋這個現象。事實上,這個實驗倒可以成為光的波動説的有力證據之一。直到19世紀初,英國科學家托馬斯·楊才用光的波動説圓滿地解釋了牛頓環實驗。

牛頓環應用

判斷透鏡表面凸凹、精確檢驗光學元件表面質量、測量透鏡表面曲率半徑和液體折射率
在加工光學元件時,廣泛採用牛頓環的原理來檢查平面或曲面的面型準確度。
應用於光譜儀、把複合光分離成單色光的組成。