複製鏈接
請複製以下鏈接發送給好友

Fenton

鎖定
Fenton法在處理難降解有機污染物時具有獨特的優勢,是一種很有應用前景的廢水處理技術。文章介紹了該技術的發展過程、主要類型及應用狀況,並對其在廢水處理中的優勢、存在問題和發展趨勢作出評述。
中文名
Fenton
屬    性
廢水處理技術
類型特點
H2O2體系能氧化多種有機物
普通Fenton法
在Fe2+的催化作用

Fenton基本介紹

Fenton試劑、光Fenton法、電Fenton法、廢水處理
高級氧化技術又稱深度氧化技術,彙集了現代光、電、聲、磁、材料等各相近學科的最新研究成果,有望成為有機廢物尤其是難降解有機廢物處理的一把“殺手鐧”。它主要包括電化學氧化法、濕式氧化法超臨界水氧化法、光催化氧化法和超聲降解法等,其中傳統的Fenton氧化法,與其他高級氧化工藝相比,因其操作簡單、反應快速、可產生絮凝等優點而倍受喜愛。

Fenton類型特點

1894年,英國人 [1]  H.J.H.Fenton發現採用Fe/­H2O2體系能氧化多種有機物。後人為紀念他將亞鐵鹽過氧化氫的組合稱為Fenton試劑,它能有效氧化去除傳統廢水處理技術無法去除的難降解有機物,其實質是H2O2在Fe2+催化作用下生成具有高反應活性的羥基自由基(·OH),·OH可與大多數有機物作用使其降解。隨着研究的深入,又把紫外光(UV)、草酸鹽(C2O42-)等引入Fenton試劑中,使其氧化能力大大增強。從廣義上説,Fenton法是利用催化劑、或光輻射、或電化學作用,通過H2O2產生羥基自由基(·OH)處理有機物的技術。從發展歷程來看,Fenton法基本上是沿着光化學和電化學兩條路線向前發展的。

Fenton普通法

H2O2在Fe2+催化作用下分解產生·OH,其氧化電位達到2.8V,它通過電子轉移等途徑將有機物氧化分解成小分子。同時,Fe2+被氧化成Fe3+產生混凝沉澱,去除大量有機物。可見,Fenton試劑在水處理中具有氧化和混凝兩種作用。Fenton試劑在黑暗中就能降解有機物,節省了設備投資,缺點是H2O2的利用率不高,不能充分礦化有機物。研究表明,利用Fe3+、Mn2+均相催化劑鐵粉石墨、鐵、錳的氧化礦物等非均相催化劑同樣可使H2O2分解產生·OH,因其反應基本過程與Fenton試劑類似而稱之為類Fenton體系。如用Fe3+代替Fe2+,由於Fe2+是即時產生的,減少了·OH被Fe2+還原的機會,可提高·OH的利用效率。若在Fenton體系中加入某些絡合劑(如C2O2-4、EDTA等),可增加對有機物的去除率。
光Fenton法
1.2.1 UV/Fenton法
當有光輻射(如紫外光、紅外光、可見光)時,Fenton試劑氧化性能有很大的改善。UV/Fenton法也叫光助Fenton法,是普通Fenton法與UV/H2O2兩種系統的複合,與該兩種系統相比,其優點在於降低了Fe2+用量,提高了H2O2的利用率。這是由於Fe3+和紫外線對H2O2的催化分解存在協同效應。該法存在的主要問題是太陽能利用率仍然不高,能耗較大,處理設備費用較高。
1.2.2UV-vis/草酸鐵絡合物/H2O2法
當有機物濃度高時,被Fe3+絡合物所吸收的光量子數很少,且需較長的輻照時間,H2O2的投加量也隨之增加,·OH易被高濃度的H2O2所清除。因而,UV/Fenton法一般只適宜於處理中低濃度的有機廢水。當在UV/Fenton體系中引入光化學活性較高的物質(如含Fe3+的草酸鹽檸檬酸鹽絡合物)時,可有效提高對紫外線和可見光的利用效果。草酸鐵絡合物在pH3~4.9時效果好,檸檬酸鐵絡合物在pH4.0~8.0時效果好,但因前者具有含Fe3+的其他絡合物所不具備的光譜特性,所以UV-vis/草酸鐵絡合物/H2O2法更具發展前景。該法提高了太陽能的利用率,節約了H2O2用量,可用於處理高濃度有機廢水。
電Fenton法
Fenton法比普通Fenton法提高了對有機物的礦化程度,但仍存在光量子效率低和自動產生H2O2機制不完善的缺點。電Fenton法利用電化學法產生的H2O2和Fe2+作為Fenton試劑的持續來源,與光Fenton法相比具有以下優點:一是自動產生H2O2的機制較完善;二是導致有機物降解的因素較多(除羥基自由基氧化作用外,還有陽極氧化電吸附等)。由於H2O2的成本遠高於Fe2+,所以通過電化學法將自動產生H2O2的機制引入Fenton體系具有很大的實際應用意義,可以説電Fenton法是Fenton法發展的一個方向。
EF-Fenton法
該法又稱陰極電解Fenton法,其基本原理是將O2噴射到電解池陰極上產生H2O2,並與Fe2+發生Fenton反應。電解Fenton體系中的O2可通過曝氣的方式加入,也可通過H2O在陽極氧化產生。該法不用外加H2O2,有機物降解徹底,且不易產生中間有毒有害物質,其缺點
在於所用陰極材料(主要為石墨活性炭纖維和玻璃炭棒)在酸性條件下產生的電流小,H2O2產量不高。
EF-Feox法
又稱犧牲陽極法,通過陽極氧化產生的Fe2+與加入的H2O2進行Fenton反應。由陽極溶解出的Fe2+和Fe3+可水解Fe(OH)2和Fe(OH)3,對水中的有機物具有很強的混凝作用,其去除效果好於EF-Fenton法,但需外加H2O2,能耗較大,成本高。
FSR法、EF-Fere法
FSR法即Fenton污泥循環系統,又稱Fe3+循環法。該系統包括一個Fenton反應器和一個將Fe(OH)3轉化成Fe2+的電池,可以加速Fe3+向Fe2+的轉化,提高·OH產率,但pH必須小於1。EF-Fere法是FSR法的改進,去掉了Fenton反應器,直接在電池裝置中發生Fenton反應,其pH操作範圍(小於2.5)和電流效率均大於FSR法。結論
Fenton法在處理難降解有機廢水時,具有一般化學氧化法無法比擬的優點,至今已成功運用於多種工業廢水的處理。但H2O2價格昂貴,單獨使用往往成本太高,因而在實際應用中,通常是與其他處理方法聯用,將其用於廢水的預處理或最終深度處理。用少量Fenton試劑對工業廢水進行預處理,使廢水中的難降解有機物發生部分氧化,改變它們的可生化性、溶解性和混凝性能,利於後續處理。另外,一些工業廢水經物化、生化處理後,水中仍殘留少量的生物難降解有機物,當水質不能滿足排放要求時,可採用Fenton法對其進行深度處理。
參考資料