複製鏈接
請複製以下鏈接發送給好友

陳俐

(上海交通大學船舶海洋與建築工程學院教授)

鎖定
陳俐,博士,上海交通大學船舶海洋與建築工程學院教授。 [1-2] 
中文名
陳俐
畢業院校
上海交通大學
學位/學歷
博士
專業方向
船舶與海洋工程
任職院校
上海交通大學船舶海洋與建築工程學院

陳俐人物經歷

陳俐工作經歷

2021 - 上海交通大學船舶海洋與建築工程學院 教授 [2] 
2015 - 上海交通大學船舶海洋與建築工程學院船舶與海洋工程系 副系主任
2008 – 2009 上海外國語大學教育部出國留學人員高級英語培訓
2007 – 2014 上海交通大學汽車電子研究所 副所長
2001 -2004 上海貝爾阿爾卡特公司 軟件工程師、系統工程師、網絡方案高級經理
2000 -2001 中望商業有限公司 軟件支持主任 [1] 

陳俐教育經歷

2010 - 2011 美國密西根大學機械工程系 訪問學者
1997 – 2000 上海交通大學機械工程系 工學博士
1994 – 1997 湖南大學機械工程系 工學碩士
1990 – 1994 湖南大學機械工程系 本科 [1] 

陳俐學術兼職

IEEE會員,SAE會員,國際控制聯盟IFAC先進汽車控制技術委員會成員,國際汽車變速器及驅動技術會議技術委員會成員,中國造船工程學會輪機學術委員會成員,期刊審稿人(IEEE Transaction on Mechatronics, IEEE Transaction on Vehicular Technology, Control Engineering Practice等) [1] 

陳俐研究方向

高效動力傳動系統動力學,自適應控制,熱耦合建模與控制
應用領域:汽車電子,智能汽車,智能機艙 [1] 

陳俐教授課程

傳熱學
力學仿生——啓示與探索
汽車電控系統設計
汽車控制工程Automotive Control Engineering(全英文課程)
汽車多能源管理與優化
汽車網絡系統概論
動力系統建模與仿真
輪機工程發展前沿 [1] 

陳俐科研項目

p29, 產學研合作,線控轉向關鍵技術研發
P28, 產學研合作,雙離合器自動變速器温度模型研發
P27. 產學研合作,變速箱控制器測試平台研發
P26. 產學研合作,變速箱系統動力學仿真台架驗證試驗
P25. 產學研合作,高壓電池管理系統技術調研與工程服務
P24. 產學研合作,混合動力控制器中的離合器控制研究
P23. 產學研合作,變速箱離合器三大基礎模型研究
P22. “十二五”國家科技支撐計劃重大項目子課題:高速磁浮車輛線路模態分析軟件開發與代碼測試研究
P21. 產學研合作,變速箱與離合器集成測試平台開發
P20. 產學研合作,動力傳動電子控制系統及其測試技術的現狀與發展趨勢諮詢
P19. 上海市軟件與集成電路產業發展專項課題:汽車電子產業創新能力的培育與發展研究
P18. 國家自然科學基金面上項目,基於單電機的多模式混合動力耦合傳動動力學機理與控制研究(51475284)
P17. 產學研合作,乘用車自動變速器無級變速器效率比較與試驗研究
P16. 產學研合作,電動汽車動力傳動系統試驗枱架系統與控制
P15. 國家自然科學基金青年基金項目,熱環境中離合傳動動力學機理與控制研究
P14. 上海市軟件與集成電路產業發展專項課題:汽車底盤與動力電控系統關鍵執行器技術研究
P13. 國際合作(GM R&D),乾式雙離合器自動變速器(DCT)的高效執行系統設計與控制研究
P12. 國際科技合作項目:面向中美清潔能源合作的電動汽車前沿技術研究子課題“純電動(含增程式)驅動系統集成控制研究”
P11. 產學研合作,乘用車手動變速器箱敲擊噪聲機理與試驗研究
P10. 產學研合作,自動變速器液壓系統建模與硬件在環控制
P9. 上海市經委,新能源汽車技術經濟分析
P8. 博士點新教師基金項目“基於動態信息融合的雙離合器自動變速器控制研究”
P7. 上海市科委創新行動項目,雙行星輪系變速驅動總成研究與開發
P6. 國家863項目,SWB6116混合動力客車研究
P5. 上海市科委登山行動計劃項目,混合動力汽車自動變速器關鍵技術及其產業化技術研究
P4. 產學研合作,汽車電子LIN總線開發
P3. 產學研合作,混合動力汽車經濟性分析
P2. 上海市科委登山行動計劃項目,汽車電子電器優化
P1. 上海交通大學振動、衝擊、噪聲國家重點實驗室開放基金課題,高速行駛中車載式表面平整度檢測系統的抗振研究,項目負責人 [1] 

陳俐學術成果

陳俐期刊論文

J23. Modeling and Simulation Study of a Novel Electro-Mechanical Clutch Actuation System, Advances in Mechanical Engineering (accepted 2017)
J22. Improved Clutch Slip Control for Automated Transmissions, IMechE, Part C: Journal of Mechanical Engineering Science (accepted 2017)
J21. Design, Modeling and Analysis of Wedge-based Actuator with Application to Clutch-to-Clutch Shift, Proc. IMechE, Part D: Journal of Automobile Engineering (accepted 2017)
J20. Modeling and Experimental Validation of Lever-based Electromechanical Actuator for Dry Clutches, Advances in Mechanical Engineering (accepted 2017)
J19. Stability Analysis of a Force-aided Lever Actuation System for Dry Clutches with Negative Stiffness Element [J], Journal of Shanghai Jiao Tong University (accepted, 2017)
J18. Design, Modeling and Validation of Clutch-to- Clutch Shift Actuator Using Dual-Wedge Mechanism, Mechatronics, 2017(42):81-95
J17. Stability and Response of a Self-amplified Braking System under Velocity-dependent Actuation Force, Nonlinear Dynamics, 2014, 78(4):2459-2477
J16. Modeling and Stability Analysis of Wedge Clutch System, Mathematical Problems in Engineering, 2014, Article ID 712472, 12 pages, doi:10.1155/2014/712472
J15. Experimental Study on Shift Quality Improvement for Automatic Transmission Using Motor Driven Wedge Clutch, Proceedings of the Institution of Mechanical Engineers, Part D, Journal of Automobile Engineering, 2014, 228(6):663–673
J14. Dynamic modeling and systematic control during mode transition for a multi-mode hybrid electric vehicle, Proceedings of the Institution of Mechanical Engineers, Part D, Journal of Automobile Engineering, 2013, 227(7):1007-1023
J13. Design and analysis of a novel multi-mode transmission for a HEV using a single electric machine, IEEE Transactions on Vehicular Technology, 2013, 62(3):1097-1110
J12. Torque Coordination Control During Mode Transition for a Series–Parallel Hybrid Electric Vehicle, IEEE Transactions on Vehicular Technology, 2012, 61(7):2936-2949
J11. Experimental and control study of slipping decay time of a wedge clutch in an automatic transmission. DSCC 2012-MOVIC 2012, v1, p151-156, 2012.
J10. Model referenced adaptive control to compensate slip-stick transition during clutch engagement. International Journal of Automotive Technology, 2011, 12(6): 913-920.
J9. Application of switching traction and braking systems in longitudinal control for series–parallel hybrid electric buses. International Journal of Vehicle Design, 2011, 56(4):299–316.
J8. Design and Analysis of an Electrical Variable Transmission for a Series-Parallel Hybrid Electric Vehicle. IEEE Transactions on Vehicular Technology, 2011, 60(5):2354-2363
J7. Optimal Torque Control Strategy of Electric Transmission Driver Based on AMT During Gear Shift , Journal of Shanghai Jiao Tong University (English Edition), Vol. 2, 2009
J6. A new type compositive hybrid power system-E.T.Driver and its application in HEV, WSEAS transactions on systems. 2008, 7(3): 203-218.
J5. System dynamic modeling and optimal torque control strategy for E.T Driver based on AMT, WSEAS transactions on systems,2008(07):742-760.
J4. Active front steering during braking process, Chinese Journal of Mechanical Engineering(English Edition), 2008, 2(4):64-70
J3. Integral power management strategy for a complex hybrid electric vehicle – catering for the failure of an individual component, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2008, 222(5):719-727
J2. The System dynamics modeling and adaptive optimal control for automatic clutch engagements of vehicles, IMechE J. Automobile Engineering, Part D., 2002, 216(12):983-991
J1. Feedback linearization control for electronically controllable clutch of vehicle, Chinese Journal of Mechanical Engineering (English Edition), 1999, 12(4):303-311 [1] 

陳俐國際論文

C19. Influence of calculation interval on engagement quality of electronically controlled clutches. Proceedings of the ASME 2017 Dynamic Systems and Control Conference (DSCC2017), October 11-13, 2017, Tysons, Virginia, USA. DSCC2017-5272
C18. A New Rotating Wedge Clutch Actuation System. SAE 2017
C17. Dynamical behaviors of an electromechanical actuator with nonlinear stiffness load in dry clutches. 46th 46th International Congress and Exposition on Noise Control Engineering, August 27-30, 2017, Hongkong
C16. Stability Analysis of Motor-Driven Actuators in Dry Clutches with Nonlinear Stiffness Element. 2017 American Control Conference, May 24-26, 2017, Seattle, Washington, USA
C15. Self-tuning PID design for slip control of wedge clutches, SAE 2017-01-1112
C14. A New Clutch Actuation System for dry DCT, SAE 2015-01-1118
C13. A Brief Analysis of Factors Influencing the Efficiency of THS, 6th Transmission and Motor Driving Technology Conference, 2014.4.19-21, Beijing, China
C12. Normal Force Observation of the Wedge Clutch System, 6th Transmission and Motor Driving Technology Conference, 2014.4.19-21, Beijing, China
C11. Model Reference Control to Reduce both the Jerk and Frictional Loss during DCT Gear Shifting, 2013 American Control Conference, June 17-June 19, 2013, Washington, DC, USA
C10. Study on DCT temperature field under vehicle creeping, 5th Transmission and Motor Driving Technology Conference, 2013.4.19-21,Suzhou, China, Best Paper Award
C9. Control Oriented Universal Format Model for Planetary Gear Transmission, 5th Transmission and Motor Driving Technology Conference, 2013.4.19-21,Suzhou China
C8. Experimental Validation of a Wedge Clutch in Automatic Transmissions. International Conference on Advanced Vehicle Technologies and Integration,Changchun, 2012.7.16-19,Best Student Paper Award
C7. Torque coordination of clutch, engine and motor during power transition for a hybrid electric bus, IEEE 7th Vehicle Power and Propulsion Conference, Chicago, USA, 2011.9.6-9
C5. Modeling of a Wedge Clutch in an Automatic Transmission. 2010, SAE paper: 01-0186
C4. Architecture Design and Performance Analysis of a Novel Electrical Variable Transmission for a Hybrid Car. 10th International Symposium on Advanced Vehicle Control, August 22-26, 2010, Loughborough, UK
C3. Robust scheduler design for automatic mechanical transmission real-time control, SAE Paper 2006-01-1490
C2. Real-time Analysis for electronically controller Unit of vehicle automatic mechanical transmission, SAE Paper 2005-01-3589
C1. WCET Analysis for engine control, IEEE International Conference on Mechatronics and Automation, ICMA 2005, 2005, p 2090-2095 [1] 

陳俐美國專利

1.Torque Transmitting Device, US 8,231,492 B2
2.Torque Transmitting System, US 8,708,854 B2
3.Dry Dual Clutch Transmission Actuator System Using Electrical Motor with Force Aided Lever, US 9,057,409 B2 [1] 

陳俐中國專利

4.混合動力汽車的雙排行星齒輪機電動力耦合裝置 [P]. 發明專利公開號: CN 101628541 A, 公開日: 2010.01.20
5.混合動力汽車雙行星排機電耦合驅動裝置 [P]. 發明專利授權號: CN 101323242 B, 授權日: 2010.07.21
6.混合動力汽車雙電機雙行星排單離合器驅動裝置 [P]. 發明專利授權號: CN 101323243 B, 授權日: 2011.07.20
7.離心式吸振離合器,專利號200910311135,授權日:2010.6.2
8.車門電動玻璃窗升降系統可靠性試驗台,專利號200810042781,授權日:2009.1.28,已轉讓給天合汽車公司; [1] 

陳俐榮譽獎勵

1.2016,上海交通大學優秀教師三等獎
2.2015,聘期考核優秀
3.2014,上海市科技進步二等獎
4.2013, Best Paper Award, Longsheng Cai, Li Chen, Study on DCT temperature field under vehicle creeping, 5th Transmission and Motor Driving Technology Conference, 2013.4.19-21,Suzhou, China;
5.2012, Best Student Paper Award, J. Yao, L. Chen*, F. Liu, C. Yin, C. J. Lee, Y. Dong, Y. Huang, C. Kao, and F. Samie. Experimental Validation of a Wedge Clutch in Automatic Transmissions. International Conference on Advanced Vehicle Technologies and Integration,Changchun, 2012.7.16-19
6.2008,晨星計劃教師;
7. 年度優秀,2007,2015等 [1] 
參考資料
  • 1.    陳俐  .上海交通大船舶海洋與建築工程學院[引用日期2019-11-21]
  • 2.    陳俐  .上海交通大學船舶海洋與建築工程學院[引用日期2022-06-01]