複製鏈接
請複製以下鏈接發送給好友

華林問題

鎖定
華林問題數論中的問題之一。1770年,愛德華·華林猜想,對於每個非1的正整數k,皆存在正整數g(k),使得每個正整數都可以表示為至多g(k)個k次方數(即正整數的k次方)之和。
中文名
華林問題
外文名
Waring's problem
相關術語
四平方和定理
參與人員
華羅庚陳景潤
應用學科
數學
所屬領域
數學
定    義
數論中的問題之一

華林問題四平方和定理

在三世紀時,數學家丟番圖首先提出“是否每一個正整數都是四個平方數之和”的問題。1730年,歐拉開始研究該問題,但未得出證明。 [1] 
第一個給出完整證明的是拉格朗日,他的證明用了歐拉的一個公式:
後來歐拉也給出另一證明。

華林問題華林猜想

1770年,華林發表了《代數沉思錄》(Meditationes Algebraicae),其中説,每一個正整數至多是9個立方數之和;至多是19個四次方之和。還猜想,每一個正整數都是可以表示成為至多r個k次冪之和,其中r依賴於k。 [1] 

華林問題研究進展

1909年,大衞·希爾伯特首先用複雜的方法證明了g(k)的存在性。1943年,U.V.林尼克給出了關於g(k)存在性的另一個證明。然而,儘管g(k)的存在性已被證明,人們尚且無法知曉g(k)與k之間的關係。華林自己推測g(2)=4,g(3)=9,g(4)=19。
1770年,拉格朗日證明了四平方和定理,指出g(2)=4。1909年亞瑟·韋伊費列治證明了g(3)=9。
1859年,劉維爾證明了g(4)<=53,他的想法是藉助一個恆等式(Liouville polynomial identity):
後來哈代李特爾伍德得到g(4)<=21, 1986年巴拉蘇布拉瑪尼安證明了g(4)=19。1896年馬力特得到g(5)<=192;1909年韋伊費列治將結果改進為g(5)<=59;1964年陳景潤證明了g(5)=37。 [2] 
事實上,萊昂哈德·歐拉之子J.A.歐拉猜想:
("[q]"表示"q"的整數部分)。至1990年,對於6<k<471600000此式已經被計算機驗證為正確。 [3] 

華林問題更強的問題

由於g(k)的值嚴重依賴於正整數較小時的情況,人們提出了一個更強的問題,求對於每個充分大的正整數,可使它們分解為k次方數的個數G(k)。此問題進展較慢,至今G(3)仍無法確定。

華林問題其他推廣

華林問題哥德巴赫問題

陳述:對於任何一個正整數n,是否存在一個數k,使得每個充分大的整數都可以表示為k個質數的n次冪的和?
此問題在1938年已被華羅庚證明成立。

華林問題表法數問題

任給一個正整數都是可以表為四個平方數之和。進一步,給定一個正整數,表示成為四個平方數的不同表示法有多少種?這問題已由雅可比給出瞭解答。
但是,對於立方和,四次方和等等的情況,仍然非常困難。

華林問題不限於正整數

考慮用有理數的方冪和來表示正有理數。
參考資料
  • 1.    吳振奎. 幾個與“形數”有關的問題 (PDF). 數學傳播. 2005年3月, 29 (1): 64–74
  • 2.    MathWorld上Waring's Problem的資料,作者:埃裏克·韋斯坦因。
  • 3.    JM Kubina, MC Wunderlich. Extending Waring's conjecture to 471,600,000 (PDF). Mathematics of Computation. 1, (55): 815–820 [2015-02-14]. doi:10.1090/S0025-5718-1990-1035936-6.