複製鏈接
請複製以下鏈接發送給好友

高明

(山東大學教授)

鎖定
高明,男,教授,工學博士,博士生導師,中共黨員,能源與動力工程系主任。現為Energy、Applied thermal Engineering以及International Journal of thermal science等國際期刊特邀審稿專家。SN Applied Science (ESCI)期刊編委,Recent Patents in Mechanical Engineering (EI) 期刊Executive Guest Editor。
2008年開始在山東大學任教,2009-2011年在山東大學機械工程流動站進行博士後研究工作,2014.1-2015.1年赴英國曼徹斯特大學進行學術訪問,師從FLUENT數值模擬的創始人之一A.Turan教授。負責本科生《泵與風機》《核電廠系統與設備》和研究生《熱力系統及設備優化》課程的講授工作。
先後獲得"山東省高等學校科學技術一等獎"、“山東大學第六屆教學能手”、“山東大學優秀班主任”、“山東省青年教師教學競賽三等獎”、“山東大學我最喜愛的教師”等稱號,分獲濟南市技術發明三等獎和山東省科技進步二等獎各一項。
主要從事高效能量轉換理論及節能技術研究,研究領域為火電廠、核電站、炭素行業以及新能源行業。近年來,致力於產學研一體化,與發電企業保持密切合作,多項研究成果已成功應用於電力企業改造,帶來了巨大的經濟效益和社會效益。
中文名
高明
國    籍
中國
民    族
漢族
畢業院校
山東大學
職    業
教師
職    稱
教授
性    別
任職院校
山東大學

高明研究領域

[1] 能量轉換理論與熱工過程優化
[2] 高效節能與儲能技術及裝備
[3] 氫能與氫燃料電池,氫能工業領域能流分析
[4] 渦輪機械內部三維流場與誘導聲場協同機理

高明教育經歷

2008-2010 山東大學機械學院,機械工程專業,博士後研究
2014-2015 英國曼徹斯特大學,能源機械學院,訪 問 學 者

高明代表論著

[1]Chang Guo,Ming Gao*, Jingying Wang, Yuetao Shi, Suoying He.The effect of blade outlet angle on the acoustic field distribution characteristics of a centrifugal pump based on Powell vortex sound theory. Applied Acoustics 155 (2019) 297-308.
[2]Zhengqing Zhang,Ming Gao*, Zhigang Dang, Fengzhong Sun. -An exploratory research on performance improvement of super-large natural draft wet cooling tower based on the reconstructed dry-wet hybrid rain zone. International Journal of Heat and Mass Transfer 135 (2019)118465.
[3]Zhigang Dang, Zhengqing Zhang,Ming Gao*, Suoying He, Numerical simulation of thermal performance for super large-scale wet cooling tower equipped with an axial fan. International Journal of Heat and Mass Transfer 135 (2019) 220-234.
[4]Zhigang Dang,Ming Gao*, Guoqing Long. Crosswind influence on cooling capacity in different zones for high level water collecting wet cooling towers based on field test. Journal of Wind Engineering & Industrial Aerodynamics 190 (2019) 134-142
[5]Yang Zhou,Ming Gao*, Guoqing Long, Zhengqing Zhang, Zhigang Dang, Suoying He, Fengzhng Sun,Experimental study regarding the effects of forced ventilation on the thermal performance for super-large natural draft wet cooling towers.Applied Thermal Engineering 155 (2019) 40-48.
[6]Zhengqing Zhang,Ming Gao*, Mingyong Wang, Hongjun Guan, Zhigang Dang, Suoying He,Fengzhong Sun, Field test study on thermal and ventilation performance for natural draft wet cooling tower after structural improvement. Applied Thermal Engineering 155 (2019) 305-312.
[7]Zitian Wu, Yuetao Shi, Kunqing Song,Ming Gao*. Numerical Simulation on Heat Transfer Performance Enhancement of Cooling Water Jacket used in Carbon Industry. Journal of Enhanced Heat Transfer, 26(3) (2019)235-255.
[8]Chang Guo, Jingying Wang, Ming Gao*, A numerical study on the distribution and evolution characteristics of an acoustic field in the time domain of a centrifugal pump based on powell vortex sound theory. Applied Sciences 9 (2019) 1-18.
[9]Chang Guo,Ming Gao*,Dongyue Lu. Experimental Study on Radiation Noise Frequency Characteristics of a Centrifugal Pump with Various Rotational Speeds, Applied Science, 8(2018)1-11.
[10]Yang Zhou, Kun Wang,Ming Gao*,Zhigang Dang et al, Experimental study on the drag characteristic and thermal performance of non-uniform fillings for wet cooling towers under crosswind conditions. Applied thermal engineering 140 (2018) 398-405.
[11]Ming Gao*, Jian Zou, Suoying He, Fengzhong Sun. Thermal performance analysis for high level water collecting wet cooling tower under crosswind conditions. Applied Thermal Engineering 136 (2018) 568-575.
[12]Jian Zou, Suoying He, Fengzhong Sun,Ming Gao*. Field test on ventilation performance for high level water collecting wet cooling tower under crosswind conditions. Applied Thermal Engineering 133 (2018) 439-445.
[13]Chang Guo,Ming Gao*, et al. -An Experimental study regarding radiation noise characteristic of centrifugal pump with various working conditions.Energies 10(12) (2017), 1-14.
[14]Ming Gao*, Peixin Dong, Fengzhong Sun. Computational Study of the Noise Radiation in a Centrifugal Pump When Flow Rate Changes, Energies 10(2) (2017)1-11.
[15]Ming Gao*, Fengzhong Sun, A.Turan. Influence of non-uniform layout fillings on thermal performance for wet cooling tower. Applied Thermal Engineering 93 (2016) 549-555
[16]Ming Gao*, Kunqing Song, Fengzhong Sun. Economic analysis and research on feed water pumps coaxially driven by turbine for 1000MW direct air-cooling units. Applied Thermal Engineering 106 (2016)944-950
[17]Ming Gao*, Fengzhong Sun, et al. Experimental research on circumferential inflow air and vortex distribution for wet cooling tower under crosswind conditions. Applied Thermal Engineering 64 (2014)93-100.
[18]Ming Gao*, Fengzhong Sun, et al. Experimental study regarding the evolution of temperature profiles inside wet cooling tower under crosswind conditions. International Journal of Thermal Sciences 86 (2014) 284-291.
[19]高明,孫奉仲,史月濤.火電廠MIS和SIS系統,中國電力出版社,北京,2013.
[20]發明專利:花瓣狀填料佈置的乾濕混合大型冷卻塔、冷卻系統及方法,ZL201611233243.5
[21]發明專利:一種濕式布袋深度除塵系統,ZL201310587654.4
[22]發明專利:一種雙層間接冷卻塔,ZL201510149707.3
[23]發明專利:環形填料佈置的乾濕混合大型冷卻塔及火電廠冷卻系統,ZL201611233756.6
[24]發明專利:一種濕式冷卻塔塔內性能參數監測系統及其方法,ZL201710822987.9
[25]發明專利:高位集水冷卻塔的塔內性能參數採集測點佈設及測試方法,ZL201710822970.3
[26]發明專利:高位集水冷卻塔熱力性能在線監測系統,ZL201710822102.5
[27]發明專利:高位集水冷卻塔收水裝置阻力特性的在線監測系統,ZL201710822101.0
[28]發明專利:濕式冷卻塔填料的一種新型佈置方法,ZL201210085960.3
[29]發明專利:帶有配風孔板的濕式冷卻塔,ZL201310574025.8
[30]發明專利:一種帶有分隔牆的雙層濕式冷卻塔,ZL201510149709.2
[31]發明專利:一種帶有斜置冷卻三角的間接冷卻塔,ZL201510148451.4
[32]發明專利:一種冷卻三角花瓣狀佈置的間接冷卻塔,ZL201510148728.3
主持項目
[1]基於雨區乾濕混合冷卻的超大型濕式冷卻塔高效節能技術研發,山東省重點研發計劃,在研
[2]利用雨區淋水勢能提升超大型濕式冷卻塔傳熱傳質性能的研究,國家自然科學基金(面上項目),在研
[3]鍋爐與汽輪機的機組聯合煙氣回熱循環理論與餘熱利用技術的研究,國家發展改革委產業化示範項目,在研
[4]側風下大型濕式冷卻塔塔內填料非均勻佈置方式的優化研究,國家發展改革委產業化示範項目,在研
[5]核電超大型濕式冷卻塔配風和填料協同機理及最優匹配的研究,國家自然科學基金(青年項目),已結題
[6]側風下超大型濕式冷卻塔利用雨區淋水勢能增效的機理研究,山東省自然科學基金(面上項目),已結題
[7]外界側風下濕式冷卻塔進風口風速及塔內漩渦分佈規律的研究,中國博士後科學基金面上資助項目,已結題
[8]基於碳素行業的固體餘熱集總利用的基礎研究,教育部博士點基金,已結題
[9]基於神經網絡技術的火電廠冷卻塔配風和填料協同優化研究,山東省自然科學基金(青年基金),已結題
[10]火電廠主機泵技術的開發應用研究,國家電力投資集團公司,已結題
[11]超大型高位集水冷卻塔三維熱力性能測試的研究,中國能源建設集團,已結題
[12]大型逆流式冷卻塔實塔三維熱力性能測試,中國能源建設集團,已結題
[13]《泵與風機》課程實踐化教學的研究與探索,教育部教學指導委員會教改項目,已結題

高明講授課程

本科生:《傳熱學》、《泵與風機》、《核電廠系統及設備
研究生:《熱力系統及設備優化》、《熱力設備可靠性》