複製鏈接
請複製以下鏈接發送給好友

隧道工程測量

鎖定
隧道工程測量(tunnel engineering survey)是在隧道工程的規劃勘測設計、施工建造和運營管理的各個階段進行的測量。
中文名
隧道工程測量
外文名
tunnel engineering survey
釋    義
在隧道工程的規劃、勘測設計
屬    性
方法

隧道工程測量定義

隧道工程測量為保證隧道能按規定的精度正確貫通及相關的建築物與構築物的位置正確,從而要求:規劃階段,提供隧道選線用的地形圖地質填圖所需的測繪資料;勘測設計階段,在隧道沿線布測測圖控制網,測繪帶狀地形圖,實地進行隧道的洞口點、中線控制樁和中線轉折點的測設,繪製隧道線路平面圖、縱斷面圖、洞身工程地質橫斷面圖、正洞口和輔助洞口的縱斷面圖等工程設計圖;施工建造階段,根據隧道施工要求的精度和施工順序進行相應的測量,首先根據隧道線路的形狀和主洞口、輔助洞口、轉折點的位置進行洞外施工控制網和洞口控制網的布沒及施測,再進行中線進洞關係的計算及測量,隨隧道向前延伸而階段性地將洞內基本控制網向前延伸,並不斷進行施工控制導線的布測和中線的施工放樣,指導並保證不同工作面之間以預定的精度貫通,貫通後進行實際貫通誤差的測定和線路中線的調整,施工過程中進行隧道縱橫斷面測量和相關建築物的放樣,以及進行竣工測量;在施工建造和運營管理階段,定期進行地表、隧道洞身各部位及其相關建築物的沉降觀測和位移觀測。

隧道工程測量實施階段

隧道工程測量地面控制測量

隧道工程平面控制測量的主要任務是測定各洞口控制點的平面位置,以便根據洞口控制點將設計方向導向地下,指引隧道開挖,並能按規定的精度進行貫通。因此,平面控制網中應包括隧道的洞口控制點。通常,平面控制測量有以下幾種方法。
① 直接定線法
對於長度較短的直線隧道,可以採用直接定線法。如圖12-31所示,A、D兩點是設計的直線隧道洞口點,直接定線法就是把直線隧道的中線方向在地面標定出來,即在地面測設出位於AD直線方向上的B、C兩點,作為洞口點火、D向洞內引測中線方向時的定向點。
圖12-31 圖12-31
在4點安置經緯儀,根據概略方位角。定出B'點。搬經緯儀到B'點,用正倒鏡分中法延長直線到C'點。搬經緯儀至C'點,同法再延長直線到D點的近旁D'點。在延長直線的同時,用經緯儀視距法或用測距儀測定義月"、月"C'和C"D"的長度,量出D'0的長度。計算C點的位移量。在CJ點垂直於CfD'方向量取C"C,定出C點。安置經緯儀於C點,用正倒鏡分中法延長DC至月點,再從屬點延長至A點。如果不與A點重合,則進行第二次趨近,直至月、C兩點正確位於AD方向上。月、C兩點即可作為在人、0點指明掘進方向的定向點,4、月、C、0的分段距離用測距儀測定,測距的相對誤差不應大於1:5000。
連接兩隧道口布設一條導線或大致平行的兩條導線,導線的轉折角用U2級經緯儀觀測,距離用光電測距儀測定,相對誤差不大於1:10000。經洞口兩點座標的反算,可求得兩點連線方向的距離和方位角,據此可以計算掘進方向。
三角網
圖12-32 圖12-32
對於隧道較長、地形複雜的山嶺地區,地面平面控制網一般佈置成三角網形式,如圖12-32所示。測定三角網的全部角度和若干條邊長,或全部邊長,使之成為邊角網。三角網的點位精度比導線高,有利於控制隧道貫通的橫向誤差。
④GPS法
用全球定位系統GPS技術作地面平面控制時,只需要佈設洞口控制點和定向點且相互通視,以便施工定向之用。不同洞口之間的點不需要通視,與國家控制點或城市控制點之間的聯測也不需要通視。因此,地面控制點的佈設靈活方便,且定位精度已優於常規控制方法。
高程控制測量的任務是按規定的精度施測隧道洞口(包括隧道的進出口、豎井口、斜井口和平響口)附近水準點高程,作為高程引測進洞的依據。高程控制通常採用三、四等水準測量的方法施測。
水準測量應選擇連接洞口最平坦和最短的線路,以期達到設站少、觀測快、精度高的要求。每一洞口埋設的水準點應不少於兩個,且以安置一次水準儀即可聯測為宜。兩端洞口之間的距離大於1km時,應在中間增設臨時水準點。

隧道工程測量隧道施工測量

(1)隧道掘進的方向、里程和高程測設
洞外平面和高程控制測量完成後,即可求得洞口點(各洞口至少有兩個)的座標和高程,根據設計參數計算洞內中線點的設計座標和高程。座標反算得到測設數據,即洞內中線點與洞口控制點之間的距離、角度和高差關係。測設洞內中線點位。
① 掘進方向測設數據計算
如圖12-33所示一直線隧道的平面控制網,A、B、C、…、G為地面平面控制點。其中A、G為洞口點,多l、5z為設計進洞的第1、第2箇中線里程樁。為了求得A點洞口中線掘進方向及掘進後測設中線里程樁31,用座標反算公式求測設數據:
圖12-33 圖12-33
對於G點洞口的掘進測設數據,可以作類似的計算。對於中間具有 曲線的隧道,如圖12-34所示,隧道中線轉折點C的座標和曲線半徑只已由設計文件給定。因此,可以計算兩端進洞中線的方向和里程並測設。當掘進達到曲線段的里程以後,按照測設線路工程平面圓曲線的方法測設曲線上的里程樁
圖12-34 圖12-34
② 洞口掘進方向標定
圖12-35 圖12-35
隧道貫通的橫向誤差主要由隧道中線方向的測設精度所決定,而進洞時的初始方向尤為重要。因此,在隧道洞口,要埋設若干個固定點,將中線方向標定於地面,作為開始掘進及以後與洞內控制點聯測的依據。如圖12-35所示,用1、2、3、4標定掘進方向,再在洞口點火與中線垂直方向上埋設5、6、7、8樁。所有固定點應埋設在不易受施工影響的地方,並測定入點至2、3、6\7點的平距。這樣,在施工過程中可以隨時檢查或恢復洞口控制點的位置和進洞中線的方向及里程。
③洞內中線和腰線的測設
圖12-36 圖12-36
中線測設:根據隧道洞口中線控制樁和中線方向樁,在洞口開挖面上測設開挖中線,並逐步往洞內引測中線上的里程樁。一般,當隧道每掘進20m要埋沒一箇中線里程樁。 中線樁可以埋設在隧道的底部或頂部,如圖12-36所示。腰線測設:在隧道施工中,為了控制施工的標高和隧道橫斷面的放樣,在隧道巖壁上,每隔一定距離(5-10m)測設出比洞底設計地坪高出1m的標高線,稱為腰線。腰線的高程由引入洞內的施工水準點進行測設。由於隧道的縱斷面有一定的設計坡度,因此,腰線的高程按設計坡度隨中線的里程而變化,它與隧道的設計地坪高程線是平行的。
④掘進方向指示
隧道的開挖掘進過程中,洞內工作面狹小,光線暗淡。因此,在隧道掘進的定向工作中,經常使用激光準直經緯儀激光指向儀,以指示中線和腰線方向。它具有直觀、對其他工序影響小、便於實現自動控制等優點。例如,採用機械化掘進設備,用固定在一定位置上的激光指向儀,配以裝在掘進機上的光電接收靶,當掘進機向前推進中,方向如果偏離了指向儀發出的激光束,則光電接收靶會自動指出偏移方向及偏移值,為掘進機提供自動控制的信息。
(2)洞內施工導線和水準測量
①洞內導線測量
測設隧道中線時,通常每掘進20m埋設一箇中線樁。由於定線誤差,所有中線樁不可能嚴格位於設計位置上。所以,隧道每掘進至一定長度(直線隧道約每隔100m左右,曲線隧道按通視條件儘可能放長)佈設一個導線點,也可以利用埋設的中線樁作為導線點,組成洞內施工導線。導線的轉折角採用DJ2級經緯儀至少觀測兩個測回。距離用經過檢定的鋼尺或光電測距儀測定。洞內施工導線只能佈置成支導線的形式,並隨着隧道的掘進逐漸延伸。支導線缺少檢核條件,觀測應特別注意,轉折角應觀測左角和右角,邊長應往返測量。根據導線點的座標來檢查和調整中線校位置。隨着隧道的掘進,導線測量必須及時跟上,以確保貫通精度。
②洞內水準測量
用洞內水準測量控制隧道施工的高程。隧道向前掘進,每隔;200-500M應設置一個洞內水準點,並據此測設腰線。通常情況下、可利用導線點作為水準點,也可將水準點埋設在洞頂或洞壁上,但都應力求穩固和便於觀測。洞內水準線路也是支水準線路,除應往返觀測外,還須經常進行復測。
盾構法是隧道施工採用的一項綜合性施工技術,它是將隧道的定向掘進、運輸、襯砌、安裝等各工種組合成一體的施工方法。其工作深度可以很深,不受地面建築和交通的影響,機械化和自動化程度很高,是一種先進的土層隧道施工方法,廣泛用於城市地下鐵道、越江隧道等工程的施工中。
圖12-37 圖12-37
盾構的標準外形是圓筒形,也有矩形、半圓形等與隧道斷面相近的特殊形狀。圖12-37所示為圓筒形盾構及隧道襯砌管片的縱剖面示意圖。切口環是盾構掘進的前沿部分,利用沿盾構圓環四周均勻佈置的推進千斤頂,頂住己拼裝完成的襯砌管片(鋼筋混凝土預製),使盾構向前推進。
盾構施工測量主要是控制盾構的位置和推進方向。利用洞內導線點測定盾構的位置(當前空間位置和軸線方向)。用激光經緯儀或激光定向儀指示推進方向,用千斤頂編組施以不同的推力,進行糾偏,即調整盾構的位置和推進方向。

隧道工程測量豎井聯繫測量

在隧道施工中,除了通過開挖平峒、斜井以增加工作面外,還可以採用開挖豎井的方法來增加工作面,將整個隧道分成若干段,實行分段開挖。例如,城市地下鐵道的建造,每個地下站是一個大型豎井,在站與站之間用盾構進行開挖,並不受城市地面密集的建築物和繁忙交通的影響。
圖12-38 圖12-38
為了保證地下各方向的開挖面能準確貫通,必須將地面控制網中的點位座標、方位和高程,通過豎井傳遞到地下,這項工作稱為豎井聯繫測量。豎井施工前,根據地面控制點把豎井的設計位置測設於地面。豎井向地下開挖,其平面位置用懸掛大錘球或用垂準儀測設鉛垂線,可以將地面的控制點垂直投影至地下施工面。工作原理和方法與高層建築的平面控制點垂直投影完全相同。高程控制點的高程傳遞可以用鋼捲尺垂直丈量法或全站儀天頂測距法。參見第ll章的有關內容。
豎井施工到達設計底面以後,應將地面控制點的座標、高程和方位作最後的精確傳遞,以便能在豎井的底層確定隧道的開挖方向和里程。由於豎井的井口直徑(圓形豎井)或寬度(矩形豎井)有限,用於傳遞方位的兩根鉛垂線的距離相對較短(一般僅為3-5m),垂直投影的點位誤差會嚴重影響井下方位定向的精度。如圖12-38所示,Vl、V2是 圓形豎井井口的兩個投影點,垂直投影至井下。由於投點誤差,至井底偏移到V1、認。設VlV\=Vz八,則產生的方位角誤差為:
凸"=2嚴I/11/;/I/lI/z (12-13)
式中ρ為206265"。
設V11/z=5m,VlVL=1mm,則產生的方位角誤差麼。=l'23"。一般要求投點誤差應小於0.5mm。兩垂直投影點的距離越大,則投影邊的方位角誤差越小。該邊的方位角要作為地下洞內導線的起始方位角。因此,在豎並聯繫測量工作中,方位角傳遞是一項關鍵性工作,主要有一井定向兩井定向陀螺經緯儀定向等方法。

隧道工程測量隧道竣工測量

隧道工程竣工後,為了檢查工程是否符合設計要求,併為設備安裝和運營管理提供基礎信息,需要進行竣工測量,繪製竣工圖。由於隧道工程是在地下,因此隧道竣工測量具有獨特之處。
圖12-39 圖12-39
驗收時檢測隧道中心線。在隧道直線段每隔50m、曲線段每隔20m檢測一點。地下永久性水準點至少設置兩個,長隧道中每公里設置一個。
隧道竣工時,還要進行縱斷面測量和 橫斷面測量。縱斷面應沿中線方向測定底板和拱頂高程,每隔10-20m測一點,繪出竣工縱斷面圖,在圖上套繪設計坡度線進行比較。直線隧道每隔10m、曲線隧道每隔5m測一個橫斷面。橫斷面測量可以用直角座標法極座標法。如圖12-39中(a)所示,用直角座標法測量隧道竣工橫斷面。測量時,是以橫斷面的中垂線為縱軸,以起拱線為橫軸,量出起拱線至拱頂的縱距ti和中垂線至各點的橫距)'',還要量出起拱線至底板中心的高度z'等,依此繪製竣工橫斷面圖。如圖12-39中(b)所示,用極座標法測量竣工橫斷面。用一個有0。一360'刻度的圓盤,將圓盤上0。一180'刻度線的連線方向放在橫斷面中垂線位置上,圓盤中心的高程從底板中心高程量出。用長杆挑一皮尺零端指着斷面上某一點,量取至圓盤中心的長度,並在圓盤上讀出角度,即可確定點位。在一個橫斷面上測定若干特徵點,就能據此繪出竣工橫斷面圖 。