複製鏈接
請複製以下鏈接發送給好友

戴曉明

(北京科技大學教授、博士生導師)

鎖定
戴曉明,男,北京科技大學計算機與通信工程學院教授、博士生導師、IMT-2020 (5G) 新型多址接入技術組副組長、無線通信與信號處理實驗室主任,研究方向:6G關鍵技術、語音信號處理、人工智能大數據和ASIC芯片設計等。 [2] 
主要從事無線傳輸和接收機設計理論與關鍵技術方面的研究,提出低複雜度性能無損最大似然檢測(Reduced Complexity Performance-lossless Maximum Likelihood Detection) [3]  [7-8]  、“圖樣分割多址接入(Pattern Division Multiple Access, PDMA) [4]  、“複雜度受限容量可達非正交多址接入設計(Complexity-Constrained Capacity-Achieving Non-Orthogonal Multiple Access Design)” [5]  和“圖樣分割隨機接入(Pattern Division Random Access, PDRA)” [6]  等技術。
以第一作者身份發表學術論文30餘篇,其中IEEE Trans. Commun.IEEE Wireless Commun.等SCI文章10餘篇(JCR一二區期刊8篇),以通信作者身份發表學術論文20餘篇,申請/授權國內國際發明專利30餘項。研究成果[8][11]被歐盟第七框架計劃核心項目引用;研究成果[6][8]專利引用44次(東京大學他引用次數255次)。 [2] 
中文名
戴曉明
國    籍
中國
民    族
職    業
教師
主要成就
圖樣分割多址接入的提出者 [1] 
學    位
博士

戴曉明獲獎專利

[1] 戴曉明 “數據處理方法、無線通信發送裝置和無線通信接收裝置” 申請號: CN200410095544.7 申請日期: 2004-11-29 公開號: CN1783762B 公開日期: 2010-04-01, 已授權
[2] 戴曉明 “一種基於信道估計的速度測量方法及裝置” 申請號: CN201210359122.0 申請日期: 2012-09-24 公開號: CN102857962A 公開日期: 2013-01-02
[3] 戴曉明 “一種多輸入多輸出數據檢測方法及裝置” 申請號: CN201210361158.2 申請日期: 2012-09-25 公開號: CN102882815B 公開日期: 2015-07-01, 已授權
[4] 戴曉明 “RI確定方法和設備” 申請號: CN201110316341.6 申請日期: 2011-10-18 公開號: CN102412942B 公開日期: 2015-07-15, 已授權
[5] 戴曉明 “Code evaluating device, code evaluating method, wireless communication system, base station and mobile station” 申請號: EP1998460A4 申請日期: 2007-03-19 公開號: EP19984604A4 公開日期: 2014-07-30
[6] 戴曉明, 張豔, 徐紅豔, 周海軍 “一種傳輸、接收CDMA擴頻符的方法及裝置” 申請號: CN201210018894.8 申請日期: 2012-01-20 公開號: CN103220237A 公開日期: 2013-07-24, 已授權
[7] 戴曉明, 黃琛, 唐勝志 “一種信號檢測的方法及裝置” 申請號: CN201110067978.6 申請日期: 2011-03-21 公開號: CN102148779A 公開日期: 2011-08-10, 已授權
[8] 戴曉明, 譚鳳鳴, 康紹莉, 周海軍 “一種應用於CDMA系統的擴頻通信方法及裝置” 申請號: CN201210019195.5 申請日期: 2012-01-20 公開號: CN103220013A 公開日期: 2013-07-24
[9] 戴曉明, 黃琛, 唐勝志 “一種信道估計方法及裝置” 申請號:CN201110405340.9 申請日期: 2011-12-08 公開號: CN103166877A 公開日期: 2013-06-19, 已授權
[10] 戴曉明, 董園園, 趙爽, 等. “一種非正交多址碼本優化方法” 申請號: CN201810854414.9 : 申請日期: 2018-07-30
[11] 戴曉明, 馬心陽, 閆甜甜, 等. “一種分佈式上行多用户隨機接入方法” 申請號: 202011079779.2 申請日期: 2020-10-10 公佈號: CN112218366B 公佈日期: 2021-08-24, 已授權
[12] 戴曉明, 閆甜甜, 王毅達, 等. “一種分佈式上行多用户隨機接入方法” 申請號: 202010670904.0 申請日期: 2020-07-13 公佈號: CN111901889B 公佈日期: 2021-09-07
[13] 戴曉明, 閆甜甜, 王毅達, 等. “一種蜂窩用户初始接入功率控制方法” 申請號: 202010641876.X 申請日期: 2020-07-06 公開號: CN111901860B 公開日期: 2021-08-31, 已授權
[14] 戴曉明 “一種用於檢測數據傳輸和數據接收的方法及基站和用户設備” 申請號: CN201410067167.X 申請日期: 2014-02-26公開號: WO2015127885A1 公開日期: 2015-09-03, 國際專利
[15] 戴曉明 “一種數據傳輸、數據接收的檢測方法和基站、用户設備” 申請號: CN201410030862.9A 申請日期: 2014-01-22 公開號: CN104796243B 公開日期: 2015-07-22, 已授權
[16] 戴曉明, 康紹莉, 孫韶輝 “多輸入多輸出(MIMO)系統、設備和系統中的信號接收方法” 申請號: CN201410395305.7 申請日期: 2014-08-12 公開號: CN105337653B 公開日期: 2019-02-01, 已授權
[17]戴曉明, 康紹莉, 孫韶輝, 孟溪 “一種空間分層傳輸的方法及裝置” 申請號: CN201410848868.7 申請日期: 2014-12-29 公開號: CN105812090B 公開日期: 2019-06-07

戴曉明科研項目

華為技術有限公司“大規模天線與新型多址接入關鍵技術研究”,2018,主持。
中興通訊股份有限公司“面向5G的基於稀疏編碼矩陣的非正交多址研究”,2018,主持。
電信科學技術研究院“新型多址接入關鍵技術研究”,2017,主持。
北京小米移動軟件有限公司“面向5G的關鍵技術研究”,2017,主持。
國家自然科學基金重點項目“時空一致性的無線接入架構與關鍵技術研究”,2016,參與。
國家自然科學麪上項目“基於稀疏編碼基礎理論及關鍵技術研究”, 61871029,2019,主持。
OPPO廣東移動通信有限公司 “多麥克風語音增強和分離算法研究”,2020,主持。
國家863計劃重點項目“5G新型調製編碼技術研究開發”, SS2015AA011303,2014,參與(排名第二)。
北京科委 “面向連續廣域覆蓋場景的5G新型多址接入關鍵技術研究”,2017,主持。
大唐移動“第五代通信中新型多址方案技術”,2016,主持。
中國移動研究院項目“關於5G總體設計、關鍵技術研究及標準化-新型多址技術評估與方案設計”,2015,主持。
中國移動研究院項目“5G多址接入關鍵技術研究”,2016,主持。
展訊通信項目“第五代通信中新型多址方案設計”,2017,主持。
展訊通信項目“第六代通信物理層關鍵技術研究”,2021,主持。
是德科技(Keysight,原安捷倫儀器)全球大學研究項目“第五代非正交多址接入方案研究”,2016,主持。
中央高校基本科研業務項目“下一代移動通信系統(5G)超密集組網關鍵技術研究”,2016,主持。 [2] 

戴曉明論文論著

[1] X. Dai, Z. Zhang, S. Chen, S. Sun, and B. Bai, “Pattern Division Multiple Access (PDMA): A new multiple access technology for 5G,” IEEE Wireless Commun., vol. 25, no. 2, pp. 54-60, Apr. 2018.
[2] X. Dai, “Allele gene based adaptive genetic algorithm to the code design,” IEEE Trans. Commun., vol. 59, no. 5, pp. 1253-1259, May 2011.
[3] X. Dai, T. Yan, Q. Li, H. Li, and X. Wang, “Pattern Division Random Access (PDRA) for M2M communications with massive MIMO systems,” IEEE Trans. Veh. Technol., vol. 70, no. 12, pp.12631-12639, Dec. 2021.
[4] X. Dai, K. Higuchi, Z. Zhang, K. Long, S. Sun, and Y. Wang, “Enhancing the performance of the quasi-ML receiver (detector plus decoder) for coded MIMO systems via statistical information,” IEEE Trans. Veh. Technol., vol. 65, no. 5, pp. 3765-3771, May 2016.
[5] X. Dai, Z. Zhang, K. Long, S. Sun, and Y. Wang, “Unequal error correcting capability aware iterative receiver for (parallel) turbo coded communications,” IEEE Trans. Veh. Technol., vol. 63, no. 7, pp. 3446-3451, Sept. 2014.
[6] X. Dai, R. Zou, S. Sun, and Y. Wang, “Reducing the complexity of quasi-maximum-likelihood detectors through companding for coded MIMO systems,” IEEE Trans. Veh. Technol., vol. 61, no. 3, pp. 1109-1123, Mar. 2012.
[7] X. Dai, H. Zhang, and Y. Wang, “New sequence design criteria for multipath channels,” IEEE Trans. Veh. Technol., vol. 58, no. 8, pp. 4149-4158, Oct. 2009.
[8] X. Dai, R. Zou, S. Sun, and Y. Wang, “Reducing complexity of quasi-ML detectors through simplified branch metric and accumulated branch metric based detection,” IEEE Commun. Lett., vol. 17, no. 5, pp. 916-919, May 2013.
[9] X. Dai, “Enhancing the performance of the SIC-MMSE iterative receiver for coded MIMO systems via companding,” IEEE Commun. Lett., vol. 16, no. 6, pp. 921-924, Jun. 2012.
[10] X. Dai, R. Zou, S. Sun, and Y. Wang, “Transceiver impairments on the performance of the LMMSE-PIC iterative receiver and its mitigation,” IEEE Commun. Lett., vol. 17, no. 8, pp. 1536-1539, Aug. 2013.
[11] X. Dai, S. Sun, and Y. Wang, “Reduced-complexity performance-lossless (quasi-) maximum-likelihood detectors for S-QAM modulated MIMO Systems,” Electronics Lett., vol. 49, no. 11, pp. 724-725, May 2013.
[12] X. Dai, T. Yan, Y. Dong, Y. Luo, and H. Li, “Low-complexity joint weighted neumann series and gauss-seidel soft-output detection for massive MIMO systems,” Wireless Pers. Commun., vol. 120, no. 4, pp. 2802-2811, Oct. 2021.
[13] X. Dai, Z. Zhang, L. Dai, and B. Bai, “A low-complexity hardware-friendly DFT-based channel estimator for the LTE uplink channel,” Wireless Pers. Commun., vol. 97, no. 4, pp. 4813-4825, Aug. 2017.
[14] X. Dai, S. Sun, and Y. Wang, “Reduced-complexity (quasi-) maximum-likelihood detectors with no performance degradation for S-QAM modulated MIMO systems,” Wireless Pers. Commun., vol. 66, no. 4, pp. 613-6273, Oct. 2012.
[15] X. Dai, “Successive interference cancellation amenable space-time codes with good multiplexing-diversity tradeoff,” Wireless Pers. Commun., vol. 55, no. 4, pp. 645-654, Oct. 2010.
[16] H. Li, Y. Dong, C. Gong, X. Wang and X. Dai*, “Decentralized Groupwise Expectation Propagation Detector for Uplink Massive MU-MIMO Systems,” IEEE Internet of Things J., vol. 10, no. 6, pp. 5393-5405, 15 March15, 2023. (*Corresponding author)
[17] H. Li, C. Gong, Q. Li, S. Hao, X. Wang and X. Dai*, “OTFS-PDMA Scheme with EPA-Based Receivers for High-Mobility IoT Networks”, IEEE Trans. Wireless Commun., 2023. DOI: 10.1109/TWC.2023.3323559 (*Corresponding author)
[18] C. Gong, H. Li, S. Hao, K. Long and X. Dai*, “Active RIS Enabled Secure NOMA Communications With Discrete Phase Shifting”, IEEE Trans. Wireless Commun., 2023. DOI: 10.1109/TWC.2023.3309006 (*Corresponding author)
[19] Z. Zhang, C. Gong, Y. Dong, X. Wang, and X. Dai*, “Expectation propagation aided signal detection for uplink massive generalized spatial modulation MIMO systems,” IEEE Trans. Wireless Commun., vol. 21, no. 3, pp. 2006-2018, Mar. 2022. (*Corresponding author)
[20] H. Li, Y. Dong, C. Gong, X. Wang and X. Dai*, “Gaussian Message Passing Detection With Constant Front-Haul Signaling for Cell-Free Massive MIMO,” IEEE Trans. Veh. Technol., vol. 72, no. 4, pp. 5395-5400, April 2023. (*Corresponding author)
[21] Z. Zhang, Y. Dong, K. Long, X. Wang, and X. Dai*, “Decentralized baseband processing with gaussian message passing detection for uplink massive MU-MIMO systems,” IEEE Trans. Veh. Technol., vol. 71, no. 2, pp. 2152-2159, Feb. 2022. (*Corresponding author)
[22] Z. Zhang, H. Li, Y. Dong, X. Wang, and X. Dai*, “Decentralized signal detection via expectation propagation algorithm for uplink massive MIMO systems,” IEEE Trans. Veh. Technol., vol. 69, no. 10, pp. 11233-11240, Oct. 2020. (*Corresponding author)
[23] H. Li, Y. Dong, C. Gong, Z. Zhang, X. Wang and X. Dai*, “A Non-gaussianity-aware receiver for impulsive noise mitigation in underwater communications,” IEEE Trans. Veh. Technol, vol. 70, no. 6, pp. 6018-6028, Jun. 2021. (*Corresponding author)
[24] C. Gong, X. Yue, Z. Zhang, X. Wang, and X. Dai*, “Enhancing physical layer security with artificial noise in large-scale NOMA networks,” IEEE Trans. Veh. Technol., vol. 70, no. 3, pp. 2349-2361, Mar. 2021. (*Corresponding author)
[25] C. Gong, X. Yue, X. Wang, X. Dai*, R. Zou, and M. Essaaidi, “Intelligent reflecting surface aided secure communications for NOMA networks,” IEEE Trans. Veh. Technol., vol. 71, no. 3, pp. 2761-2773, Mar. 2022. (*Corresponding author)
[26] Y. Dong, H. Li, C. Gong, X. Wang and X. Dai*,“An Enhanced Fully Decentralized Detector for the Uplink M-MIMO System,” IEEE Trans. Veh. Technol., vol. 71, no. 12, pp. 13030-13042, Dec. 2022. (*Corresponding author)
[27] Y. Dong, H. Li, X. Wang, X. Dai* and K. Long, “Robust Expectation Propagation Detector in Impulsive Noise Channel,” IEEE Syst. J., vol. 17, no. 2, pp. 2049-2052, Jun. 2023. (*Corresponding author)
[28] Z. Zhang, C Gong, H. Li, Y. Dong, X. Wang, and X. Dai*, “Soft-input soft-output detection via expectation propagation for massive spatial modulation MIMO systems,” IEEE Commun. Lett., vol. 25, no. 4, pp. 1173-1177, Apr. 2021. (*Corresponding author)
[29] H. Li, Y. Dong, C. Gong, Z. Zhang, X. Wang, and X. Dai*, “Low complexity receiver via expectation propagation for OTFS modulation,” IEEE Commun. Lett., vol. 25, no. 10, pp. 3180-3184, Oct. 2021. (*Corresponding author)
[30] Y. Dong, H. Li, Z. Zhang, X. Wang, and X. Dai*, “Efficient EP Detectors Based on Channel Sparsification for Massive MIMO Systems” IEEE Commun. Lett., vol. 24, no. 3, pp. 539-542, Mar. 2020. (*Corresponding author)
[31] Y. Dong, C. Gong, Z. Zhang, X. Wang, K. Long, and X. Dai*, “Low-complexity EP receiver based on location-aware and reliability-aware strategy,” IEEE Commun. Lett., vol. 25, no. 6, pp. 2034-2038, Jun. 2021. (*Corresponding author)
[32] H. Zhuang, J. Li, W. Geng, and X. Dai*, “Duplexer design for full-duplex based wireless communications,” China Commun., vol.13, no.11, pp.1-13, Nov. 2016. (*Corresponding author)
[33] B. Zhong, J. Zhang, Q. Zeng, and X. Dai*, “Coverage probability analysis for Full-Duplex relay aided Device-to-Device communications networks,” China Commun., vol.13, no.11 pp.60-67, Nov. 2016. (*Corresponding author)
[34] X. Sun, D. Zhang, and X. Dai*, “Performance analysis of Full-Duplex based two-way relaying” China Commun., vol.13, no.11, pp.35-48, Dec. 2016. (*Corresponding author)
[35] H. Li, Y. Dong, C. Gong, Z. Zhang, X. Wang, and X. Dai*. “A Low-Complexity Precoding Scheme for Downlink Massive MU-MIMO Systems with Low-Resolution DACs,” Wire. Personal Commun., pp. 3627-3640, May. 2022. (*Corresponding author)
[36] C. Gong, X. Dai*, J. Cui, and K. Long, “Performance Analysis of Distributed Reconfigurable Intelligent Surface Aided NOMA Systems,” Wire. Personal Commun., May. 2023. (*Corresponding author)
[37] X. Dai, S. Chen, S. Sun, et. al “Successive interference cancelation amenable multiple access (SAMA) for future wireless communications,” in Proc. IEEE ICCS, Macau, China, 2014, pp. 222-226.
[38] X. Dai, Y. Yu, C. Sun, S. Sun and Y. Wang, “Shedding new light on sequence design criteria for multipath channels,” in Proc. IEEE ICC, Dresden, Germany, 2009, pp. 1-6.
[39] X. Dai, “Low-complexity maximum-likelihood-based QRD-M for MIMO systems with S-QAM or APSK,” in Proc. IEEE ICC, Cape Town, South Africa, 2010, pp. 1-6.
[40] X. Dai, S. Sun, and Y. Wang, “Two high-rate space-time codes for three and four transmit antennas with good diversity-multiplexing tradeoffs,” in Proc. the 5th International ICST Conference on Communications and Networking in China, Beijing, 2010, pp. 1-5.
[41] X. Dai, S. Sun, and Y. Wang, “Successive interference cancellation amiable space-time codes with good multiplexing-diversity tradeoff,” in Proc. the 15th Asia-Pacific Conference on Communications, 2009, pp. 237-240.
[42] X. Dai, Yong, B, and L. Chen, “Shedding new light on merit factor,” VTC Spring 2008 - IEEE Vehicular Technology Conference, 2008, pp. 1776-1780.
[43] X. Gao, L. Dai, Y. Zhang, T. Xie, X. Dai, and Z. Wang, “Fast channel tracking for Terahertz beamspace massive MIMO systems” IEEE Trans. Vehi. Tech., vol. 66, no. 7, pp.5689-5696, Jul. 2017.
[44] L. Ma,S. Tong,H. Zheng, B. Bai, and X. Dai, “Edgewise Serial Message Passing Detection of Uplink SCMA Systems for Better User Fairness and Faster Convergence Rate,” IEEE Commun. Lett., vol. 8, no. 4, pp. 1285-1288, Aug. 2019.
[45] T. Xie, L. Dai, X. Gao, X. Dai, Y. Zhao, “Low-Complexity SSOR-Based precoding for massive MIMO systems,” IEEE Commun. Lett., vol. 20, no. 4, pp. 744-747, Apr. 2016.
[46] Z. Zhang, J. Wu, X. Ma, Y. Dong, Y. Wang, S. Chen, and X. Dai*, “Reviews of recent progress on low-complexity linear detection via iterative algorithms for massive MIMO systems” IEEE /CIC ICCC Workshops, 2016, pp. 1-6. (*Corresponding author)
[47] 戴曉明,龐立卓,常爭,張馨月,邢怡然,王曦元. 面向 mMIMO 系統的模式分割隨機接入方案[J].電信科學,2022,38(10):57-66.
[48] 李華,郝詩雅,鞏彩紅,李倩倩,戴曉明*.面向 6G 的新型多址與波形技術[J].電信科 學,2022,38(10):36-45. (*Corresponding author)
[49] 董園園, 張鈺婕, 李華, 王春雷, 劉曉菲, 戴曉明*. 面向5G的非正交多址接入技術[J]. 電信科學, 2019, 35 (07): 27-36. (*Corresponding author)
[50] 董園園, 鞏彩紅, 李華, 戴曉明*. 面向6G的非正交多址接入關鍵技術[J]. 移動通信, 2020, 44 (6): 57-62. (*Corresponding author)
[51] 李華, 董園園, 鞏彩紅, 戴曉明*等. 面向車聯網的非正交多址接入關鍵技術研究[J]. 移動通信, 2020, 44 (11): 02-07. (*Corresponding author)
[52] 張振宇, 鄒潤民, 惠崢, 閆甜甜, 張雨軒, 戴曉明*. 面向6G超大規模MIMO系統分佈式基帶處理信號檢測算法[J]. 移動通信, 2021, 45 (4): 16-20. (*Corresponding author)
[53] 大唐電信集團, “一種新型非正交多址接入方案”, IMT-2020(5G)推進組, IMT-2020_ TECH_1308, Apr. 2013. [2] 
[54] 3GPP, R1-162226, Discussion on multiple access for new radio interface, ZTE.
[55] 3GPP, R1-167002, Performance analysis on the effect of spreading signature matrix in 5G NR multiple access schemes, Spreadtrum Communications.
[56] 3GPP, R1-1608755, LLS results of PDMA with realistic channel estimation, CATT.
[57] 3GPP, R1-1608756, SLS results of PDMA, CATT.
[58] 3GPP, R1-164889, Analytical Evaluation of Multiple Access and Preliminary LLS Results, CMCC.
[59] 3GPP, R1-164247, Performance of LLS of PDMA, CATT. [2] 

戴曉明主要貢獻

1、學術研究相關工作
以第一作者身份發表學術論文30餘篇,其中IEEE Trans. Commun.IEEE Wireless Commun.等SCI文章10餘篇(JCR一二區期刊8篇),以通信作者身份發表學術論文20餘篇,申請/授權國內國際發明專利30餘項。研究成果[15][41]被國際電信聯盟(ITU)“未來地面無線通信技術發展趨勢”報告引用(頁碼6);研究成果[41]被華為2013全球創新計劃研究項目(項目編號:IRP-2013-01-02,頁碼8)作為唯一參考文獻引用;在文獻[11]中提出一種將最大似然檢測算法複雜度降低一個數量級,性能仍然保持一致(數學上等價)的簡化ML檢測算法,檢測方面的研究成果被韓國Sejong大學電子工程系作為研究生文獻閲讀材料;研究成果[8][11]被歐盟第七框架計劃核心項目引用;研究成果[6][8]專利引用44次(東京大學他引用次數255次)。 [2] 
2、實際應用相關工作
2006年所提出的蜂窩系統導頻設計方案被4G核心物理層標準採納;2013年在文獻[37]中提出“圖樣分割多址接入(Pattern Division Multiple Access, PDMA)”技術;2018年在文獻[1]中提出“複雜度受限下容量可達非正交多址接入設計原則(Complexity-Constrained Capacity-Achieving Non-Orthogonal Multiple Access Design Principle)”;2021年在文獻[3]中提出“圖樣分割隨機接入(Pattern Division Random Access, PDRA)”技術。
所提PDMA技術[37]分別被IMT-2020(5G)推進組和ITU納入5G白皮書和“未來地面無線通信技術發展趨勢”技術報告(頁碼6),同時在國際標準化組織3GPP工作組關於5G的標準化會議上,該項技術被華為、中國移動、大唐電信、中興通訊(ZTE)及展訊通信等多家通信企業的方向性技術文稿多次引用[54]-[59],被列為“國家863計劃5G移動通信先期研究重大項目”重要階段性和進展標誌性成果 [9]  ,且被ITU和3GPP列為5G標準化三項主流候選多址接入方案之一;PDRA技術於2022年3月作為單獨一章納入“FuTURE論壇”《6G演進多址接入技術》白皮書 [11] 在檢測與估計方面工作:“性能無損低複雜度多元LDPC譯碼器”被IMT-2030(6G)推進組作為單獨一節納入《先進調製編碼技術研究報告》 [10]  ,並作為報告的27篇基礎參考文獻之一被引用。在分佈式信號處理方面的工作[22][21]被華為2022年技術成果轉化二等獎“分佈式基帶架構的新型信道估計”作為項目指導文獻(國內唯一單位)。 [2] 
參考資料
展開全部 收起