複製鏈接
請複製以下鏈接發送給好友

韓方普

鎖定
韓方普,男,漢族,博士,研究員,博士生導師。東北師範大學遺傳與細胞研究所獲博士學位。
1998-2001年在以色列 Weizmann 研究所做博士後,從事小麥多倍體基因組進化研究;2001-2004年在加拿大農業部做Visiting Fellow 和 Biologist,從事小麥抗赤黴病分子標記和種質創新及小麥多倍體基因組進化研究;2004-2008年在美國 University of Missouri-Columbia 從事玉米功能基因組及植物人工染色體研究。2009年入選中國科學院"百人計劃" [1] 
韓方普研究組主要從事小麥和玉米功能基因組、小麥染色體工程育種及植物人工染色體研究。 [1] 
中文名
韓方普
國    籍
中國
民    族
漢族
主要成就
中國科學院"百人計劃"
職    稱
研究員

韓方普人物經歷

圖為韓方普研究員 圖為韓方普研究員
1998-2001年在以色列 Weizmann 研究所做博士後,從事小麥多倍體基因組進化研究;2001-2004年在加拿大農業部做Visiting Fellow 和 Biologist,從事小麥抗赤黴病分子標記和種質創新及小麥多倍體基因組進化研究;2004-2008年在美國 University of Missouri-Columbia 從事玉米功能基因組及植物人工染色體研究。2009年入選中國科學院"百人計劃"。韓方普研究組主要從事小麥和玉米功能基因組、小麥染色體工程育種及植物人工染色體研究。2020年8月18日,韓方普研究組在The Plant Cell在線發表 題為Rapid Birth or Death of Centromeres on Fragmented Chromosomes in Maize [2]  的研究論文, 發現了玉米染色體着絲粒失活和新生形成的頻率和時間範圍。

韓方普研究領域

遠緣雜交育種和多倍體基因組進化
重點研究多倍體作物小麥及小偃麥的形成過程及機制。高效地轉移、鑑定和跟蹤外緣基因,發掘具有重要育種價值的易位系和關鍵基因。揭示多倍體作物中基因組之間的互作與優勢的分子機理;創制、鑑定和評價小片段易位系和近緣種全基因組滲入系;分離並詳細研究來自野生物種的高產、優質、抗病蟲和抗逆基因;培育高產穩產、優質高效、抗病和耐逆的作物新品種。
植物着絲粒的結構和功能
在玉米着絲粒功能研究領域:研究玉米染色體着絲粒功能“失活-激活”的表觀遺傳學調控機制。探討DNA甲基化、組蛋白修飾以及小RNA與着絲粒功能的內在聯繫。
植物減數分裂
減數分裂過程中同源染色體的配對起始、重組、取向和分離的分子機理是國際上研究的熱點。將以小麥和玉米的特殊突變體為材料來研究上述問題,分離減數分裂相關基因並闡明其功能。
植物人工染色體
將利用不同的方法構建植物人工染色體。構建和優化適合多基因或完整代謝途徑遺傳轉化的轉基因載體。
植物基因定點突變及定向重組
隨着玉米基因組序列的完成,需要發展一種有效的方法來利用已知的序列信息進行定點突變和置換,避免位置效應而進行重要基因功能的鑑定。利用人工鋅指蛋白核酸酶技術對小麥和玉米的基因進行定點突變和置換, 將對基因功能研究和分子設計育種提供新的方法。 [1] 

韓方普發表論文

1. Zhang J, Feng C, Su H, Liu Y, Liu Y and Han F. 2020. The Cohesin Complex Subunit ZmSMC Participates in Meiotic Centromere Pairing in Maize. Plant Cell doi: 10.1105/tpc.19.00834.
2. Liu Y, Su H, Zhang J, Liu Y, Feng C and Han F. 2020. Back-spliced RNA from retrotransposon binds to centromere and regulates centromeric chromatin loops in maize.PLoS Biol.18(1):e3000582.
3. Wang J, Shi Q, Guo X and Han F.2019. Establishment and characterization of a complete set of Triticum durum-Thinopyrum elongatum monosomic addition lines with resistance to Fusarium head blight in wheat. J Genet Genomics 46(11):547-549.
4. Wang H, Liu Y, Yuan J, Zhang J and Han F.2019. The condensin subunits SMC2 and SMC4 interact for correct condensation and segregation of mitotic maize chromosomes. Plant J. doi: 10.1111/tpj.14639.
5. Feng C, Yuan J, Bai H, Liu Y, Su H, Liu Y, Shi L, Gao Z, Birchler JA and Han F. 2019. The deposition of CENH3 in maize is stringently regulated. Plant J. doi: 10.1111/tpj.14606.
6. Su H, Liu Y, Liu C, Shi Q, Huang Y and Han F.2019.Centromere Satellite Repeats Have Undergone Rapid Changes in Polyploid Wheat Subgenomes. Plant Cell 31(9):2035-2051.
7. Su H, Liu Y, Liu Y, Birchler JA and Han F.2018. The Behavior of the Maize B Chromosome and Centromere. Genes 9: 476.
8. Han F, Lamb JC, McCaw ME, Gao Z, Zhang B, Swyers NC and Birchler JA. 2018. Meiotic Studies on Combinations of Chromosomes With Different Sized Centromeres in Maize. Front Plant Sci. 9: 785.
9. Feng C, Su H, Bai H, Wang R, Liu Y, Guo X, Liu C, Zhang J, Yuan J, Birchler JA and Han F. 2018. High-efficiency genome editing using a dmc1 promoter-controlled CRISPR/Cas9 system in maize. Plant Biotechnol J. 16: 1848-1857.
10. Birchler JA and Han F. 2018. Barbara McClintock's Unsolved Chromosomal Mysteries: Parallels to Common Rearrangements and Karyotype Evolution. Plant Cell 30: 771-779.
11. Yuan J, Shi Q, Guo X, Liu Y, Su H, Guo X, Lv Z and Han F. 2017. Site-specific transfer of chromosomal segments and genes in wheat engineered chromosomes. J Genet Genomics 44: 531-539.
12. Liu Y, Su H, Liu Y, Zhang J, Dong Q, Birchler JA and Han F. 2017. Cohesion and centromere activity are required for phosphorylation of histone H3 in maize. Plant J. 92: 1121-1131.
13. Zhang J and Han F. 2017. Centromere pairing precedes meiotic chromosome pairing in plants. Sci China Life Sci. 60: 1197-1202.
14. Wang J, Liu Y, Su H, Guo X and Han F. 2017. Centromere structure and function analysis in wheat-rye translocation lines. Plant J. 91: 199-207.
15. Su H, Liu Y, Dong Q, Feng C, Zhang J, Liu Y, Birchler J and Han F. 2017. Dynamic location changes of Bub1-phosphorylated-H2AThr133 with CENH3 nucleosome in maize centromeric regions. New Phytol. 214: 682-694.
16. Su H, Liu Y, Liu Y, Lv Z, Xie S, Gao Z, Pang J, Wang X and Han F. 2016. Dynamic chromatin changes associated with de novo centromere formation in maize euchromatin. Plant J. 88: 854-866.
17. Guo X, Su H, Shi Q, Fu S, Wang J, Zhang X and Han F. 2016. De nove centromere formation and centromeric sequence expansion in wheat and its wide hybrids. PLoS Genet. 12: e1005997.
18. Feng C, Yuan J, Wang R, Liu Y, Birchler J and Han F. 2016. Efficient targeted genome modification in maize using CRISPR/Cas9 system. J Genet Genomics 43: 37-43.
19. Liu Y, Su H, Pang J, Gao Z, Wang X, Birchler J and Han F. 2015. Sequential de novo centromere formation and inactivation on a chromosomal fragment in maize. Proc Natl Acad Sci U S A 112: 1263-1271.
20. Feng C, Liu Y, Su H, Wang H, Birchler J and Han F. 2015. Recent advances in plant centromere biology. Sci China Life Sci. 58: 240-245.
21. Guo X, Shi Q, Wang J, Hou Y, Wang Y and Han F. 2015. Characterization and genome changes of new amphiploids from wheat wide hybridization. J Genet Genomics 42: 459-461.
22. Guo X, Han F. 2014. Asymmetric epigenetic modification and elimination of rDNA sequences by polyploidization in wheat. Plant Cell 26: 1-18.
23. Yuan J, Guo X, Hu J, Lv Z and Han F. 2014. Characterization of two CENH3 genes and their roles in wheat evolution. New Phytol. 206: 839-851.
24. Zhang J, Zhang B, Su H, Birchler J and Han F. 2014. Molecular mechanisms of homologous chromoso me pairing and segregation in plants. J Genet Genomics 41: 117-123.
25. Zhang B, Dong Q, Su H, Birchler J and Han F. 2014. Histone phosphorylation: its role during cell cycle and centromere identity in plants. Cytogenet Genome Res. 143: 144-149.
26. Zhang J, Pawloski W and Han F. 2013. Centromere pairing in early meiotic prophase requires active centromeres and precedes installation of the synaptonemal complex in maize. Plant Cell 25: 3900-3909.
27. Fu S, Lv Z, Gao Z, Wu H, Pang J, Zhang B, Dong Q, Guo X, Wang X, Birchler J and Han F. 2013. De novo centromere formation on a chromosome fragment in maize. Proc Natl Acad Sci U S A 110: 6033-6036.
28. Zhang B, Lv Z, Pang J, Liu Y, Guo X, Fu S, Li J, Dong Q, Wu H, Gao Z, Wang X and Han F. 2013. A functional centromere after loss of centromeric and gain of ectopic sequences. Plant Cell 25: 1979-1989.
29. Zhang H, Bian Y, Gou X, Zhu B, Xu C, Qi B, Li N, Rustgi S, Zhou H, Han F, Jiang J, Wettstein D and Liu B. 2013. Persistent whole-chromosome aneuploidy is generally associated with nascent allohexaploid wheat. Proc Natl Acad Sci U S A 110: 3447-3452.
30. Fu S, Lv Z, Guo X, Zhang X and Han F. 2013. Alteration of terminal heterochromatin and chromosome rearrangements in derivatives of wheat-rye hybrids. J Genet Genomics 40: 413-420.
31. Birchler J and Han F. 2013. Centromere epigenetics in plants. J Genet Genomics 40: 201-204.
32. Gao Z, Han F, Danilova T, Lamb J, Albert P and Birchler J. 2013. Labeling meiotic chromosomes in maize with fluorescence in situ hybridization. Methods Mol Biol. 990:35-43.
33. Masonbrink R, Fu S, Han F and Birchler J. 2013. Heritable loss of replication control of a minichromosome derived from the B chromosome of Maize. Genetics 193: 77-84.
34. Dong Q and Han F. 2012. Phosphorylation of H2A is associated with centromere function and maintenance in meiosis. Plant J. 71: 800-809.
35. Fu S, Lv Z, Qi B, Guo X, Li J, Liu B and Han F. 2012. Molecular cytogenetic characterization of wheat-Thinopyrum elongatum addition, substitution and translocation lines with a novel source of resistance to wheat Fusarium Head Blight. J Genet Genomics 39: 103-110.
36. Fu S, Gao Z, Birchler J and Han F. 2012. Dicentric chromosome formation and epigenetics of centromere formation in plants. J Genet Genomics 39: 125-130.
37. Gao Z, Fu S, Dong Q, Han F and Birchler J. 2011. Inactivation of a centromere during the formation of a translocation in maize. Chromosome Res. 19: 755-761.
38. Koo D, Han F, Birchler J and Jiang J. 2011. Distinct DNA methylation patterns associated with active and inactive centromeres of the maize B chromosome. Genome Res. 21: 908-914.
39. Birchler J, Gao Z, Shanma A, Presting G and Han F. 2011. Epigenetic aspects of centromere function in plants. Curr Opin in Plant Biol. 14: 217–222.
40. Yin W, Birchler J and Han F. 2011. Maize centromeres: where sequences meets epigenetics. Frontiers Biol. 6: 102-108.
41. Zhao N, Xu L, Li M, Zhang H, Zhu B, Qi B, Xu C, Han F and Liu B. 2011.Chromosomal and genome wide molecular changes associated with initial stages of allohexaploidization in wheat can be transit and incidental. Genome 54: 692-699.
42. Zhao N, Zhu B, Li M, Wang L, Xu L, Zhang H, Zheng S, Qi B, Han F and Liu B. 2011. Extensive and heritable epigenetic remodeling and genetic stability accompany allohexaploidization of wheat. Genetics 188: 499-510.
43. Han F, Gao Z and Birchler J. 2009. Reactivation of an Inactive Centromere Reveals Epigenetic and Structural Components for Centromere Specification in Maize. Plant Cell 21: 1929-1939.
44. Birchler J and Han F. 2009. Maize Centromeres: Structure, Function and Epigenetics. Annu Rev Genet. 43: 287-303.
45. Birchler J, Gao Z and Han F. 2009. Pairing in Plant: import is important. Proc Natl Acad Sci USA 106: 19751-19752.
46. Wolfgruber T, Sharma A, Schneider K, Albert P, Koo D, Shi J, Gao Z, Han F, Lee H, Xu R, Allison J, Birchler J, Jiang J, Dawe K and Presting G. 2009. Maize centromere structure and evolution: sequence analysis of centromeres 2 and 5 reveals a major role for retrotransposons. PLoS Genetics 5: e1000743.
47. Han F, Gao Z, Yu W, and Birchler J. 2007. Minichromosome analysis of chromosome pairing, disjunction and cohesion in maize. Plant Cell 19: 3853-3863.
48. Han F, Lamb J, Yu W, Gao Z and Birchler J. 2007. Centromere function and nondisjunction are independent components of the maize B chromosome accumulation mechanism. Plant Cell 19: 524-533.
49. Yu W, Lamb J, Han F and Birchler J. 2007. Cytological visualization of DNA transposons and their transposition pattern in somatic cells of maize. Genetics 175: 31-39.
50. Yu W, Han F, Vega J, Gao Z and Birchler J. 2007. Construction and behavior of engineered minichromosome in maize. Proc Natl Acad Sci U S A 104: 8924-8929.
51. Han F, Lamb J and Birchler J. 2006. High frequency of centromere inactivation resulting in stable dicentric chromosomes of maize. Proc Natl Acad Sci USA 103: 3238-3243. [1] 

韓方普相關文獻

[1] Birchler, J.A., and Han, F. (2018). Barbara McClintock's unsolved chromosomal mysteries: parallels to common rearrangements and karyotype evolution. Plant Cell 30: 771-779.
[2] Han F, Lamb J and Birchler J. 2006. High frequency of centromere inactivation resulting in stable dicentric chromosomes of maize. Proc Natl Acad Sci USA 103: 3238-3243.
[3] Han F, Gao Z and Birchler J. 2009. Reactivation of an Inactive Centromere Reveals Epigenetic and Structural Components for Centromere Specification in Maize. Plant Cell 21: 1929-1939.
[4] Fu S, Lv Z, Gao Z, Wu H, Pang J, Zhang B, Dong Q, Guo X, Wang X, Birchler J and Han F. 2013. De novo centromere formation on a chromosome fragment in maize. Proc Natl Acad Sci U S A 110: 6033-6036.
[5] Zhang J, Pawloski W and Han F. 2013. Centromere pairing in early meiotic prophase requires active centromeres and precedes installation of the synaptonemal complex in maize. Plant Cell 25: 3900-3909.
[6] Liu Y, Su H, Pang J, Gao Z, Wang X, Birchler J and Han F. 2015. Sequential de novo centromere formation and inactivation on a chromosomal fragment in maize. Proc Natl Acad Sci U S A 112: 1263-1271.
[7] Su H, Liu Y, Liu Y, Lv Z, Xie S, Gao Z, Pang J, Wang X and Han F. 2016. Dynamic chromatin changes associated with de novo centromere formation in maize euchromatin. Plant J. 88: 854-866.
[8] Guo X, Su H, Shi Q, Fu S, Wang J, Zhang X and Han F. 2016. De nove centromere formation and centromeric sequence expansion in wheat and its wide hybrids. PLoS Genet. 12: e1005997.
[9] Liu Y, Su H, Zhang J, Liu Y, Feng C and Han F. 2020. Back-spliced RNA from retrotransposon binds to centromere and regulates centromeric chromatin loops in maize.PLoS Biol.18(1):e3000582. [3] 
參考資料