複製鏈接
請複製以下鏈接發送給好友

邵永波

(西華大學副校長)

鎖定
邵永波,男,山東海陽人,西華大學副校長 [2]  、教授、博士生導師,四川省特聘專家、四川省有突出貢獻的優秀專家,四川省青年科技創新團隊負責人。擔任四川省土木建築學會副理事長、四川省力學學會副理事長、西南地區基礎力學與工程應用協會常務理事、中國鋼結構協會海洋鋼結構分會常務理事、中國建築金屬結構協會檢測鑑定加固改造分會和教育分會常務委員,《Petroleum》編委。四川省歐美同學會×留學人員聯誼會副會長、四川省歐美同學會東南亞分會會長、西南石油大學歐美同學會會長、致公黨西南石油大學支部主委。 [1] 
本科和碩士研究生畢業於清華大學工程力學系,2005年獲新加坡南洋理工大學土木與環境工程學院博士學位,專業為土木工程。主要從事土木工程(鋼結構和組合結構領域)、海洋工程結構和力學方面的科研工作。主持和主研國家級和省部級科研項目十餘項;獲省政府科技獎一等獎1項、二等獎1項、三等獎2項,協會獎二等獎3項。發表學術論文140餘篇,其中SCI收錄80餘篇。曾作為會議主席組織召開國際會議2次,受邀在國際會議/研討會上作大會特邀報告8次,獲2016年科學中國人土木水利與建築領域年度人物獎。 [1] 
中文名
邵永波
出生日期
1973年12月
畢業院校
清華大學
南洋理工大學
主要成就
2016年科學中國人土木水利與建築領域年度人物獎 [1] 
四川省特聘專家、四川省有突出貢獻的優秀專家 [1] 
主講課程
《鋼結構設計原理》(本科)、《高等鋼結構理論與設計》(研究生) [1] 
職    稱
教授
職    務
西華大學副校長 [2] 
工作單位
西華大學 [2] 

邵永波學習經歷

1992-1997年,本科階段:清華大學工程力學系
1997-2000年,碩士研究生階段:清華大學工程力學系
2001-2004年,博士研究生階段:新加坡南洋理工大學土木與環境工程學院

邵永波人物履歷

四川省特聘專家、四川省有突出貢獻的優秀專家,四川省青年科技創新團隊負責人。擔任四川省土木建築學會副理事長、四川省力學學會副理事長、西南地區基礎力學與工程應用協會常務理事、中國鋼結構協會海洋鋼結構分會常務理事、中國建築金屬結構協會檢測鑑定加固改造分會和教育分會常務委員,《Petroleum》編委。四川省歐美同學會×留學人員聯誼會副會長、四川省歐美同學會東南亞分會會長、西南石油大學歐美同學會會長、致公黨西南石油大學支部主委。 [1] 
政協四川省第十三屆委員會常務委員 [3] 

邵永波研究方向

鋼結構、鋼-混凝土組合結構、海洋工程結構

邵永波職務任免

2023年11月7日,四川省人民政府通知任命邵永波為西華大學副校長 [2] 

邵永波科研項目

[1]. 國家自然科學基金:焊接鋼結構在海洋乾濕交替環境與多軸應力耦合作用下腐蝕疲勞失效演化過程與評估技術(52078441),2021-2024,負責人。 [1] 
[2]. 四川省青年科技創新團隊:工程結構安全評估與災害防護技術(2019JDTD0017),2019-2022,負責人。
[3]. 國家自然科學基金:環口板加強型管節點的性能研究(50808153),2009-2011,負責人。
[4]. 國家自然科學基金國際交流項目:第12屆結構檢測、評估、維修和維護國際會議(51010305058),2010-2010,負責人。
[5]. 國家自然科學基金:衝擊荷載作用下焊接管節點失效機理與對策研究(51108399),2011-2013,第2位。
[6]. 國家自然科學基金:高層鋼結構地震倒塌模式控制與整體抗震能力設計方法(51208449),2013-2015,第2位。
[7]. 山東省自然科學基金:基於完全疊接形式的加強型焊接圓鋼管節點的抗震性能研究(ZR2009FM014),2010-2012,負責人。
[8]. 山東省自然科學基金:海洋平台加強型管節點抗衝擊性能研究(ZR2011EL046),2011-2014,第2位。
[9]. 教育部留學回國人員科研啓動基金:包含表面裂紋的海洋平台管道節點結構的殘餘疲勞壽命預測方法,2006-2008,負責人。

邵永波榮譽獎勵

1. “極端作用下大型複雜鋼管結構體系性能評估和提升技術及工程應用”,福建省科技進步二等獎, 2022年,第二位。 [1] 
2. “大型複雜空間鋼管結構設計建造新技術與應用”,湖北省科技進步一等獎,2019年,第三位。
3. “淺海石油導管架平台延壽關鍵技術”,四川省科技進步三等獎,2017年,第一位。
4. “海洋延壽平台檢測評估與安全保障技術”,中國海洋工程科學技術二等獎,2017年,第二位。
5. “導管架採油平台關鍵結構失效評估與維修加固技術”,中國石油和化工自動化應用協會科技進步二等獎,第一位。
6. “埕島油田開發工程及關鍵裝備安全評價技術體系”,中國海洋工程科學技術二等獎,2015年,第七位。
7. “局部非線性系統的動力數值分析方法在土木工程中的應用研究”,山東省自然科學三等獎,2006年,第五位。
8. 2016年科學中國人土木水利與建築領域年度人物獎。
9. 2017年四川省有突出貢獻的優秀專家。

邵永波代表性學術文章

[1]. Shao YongBo and Lie Seng Tjhen. (2005). “Parametric equation of stress intensity factor for tubular K-joint under balanced axial loads”, International Journal of Fatigue, Vol. 27, No. 6, pp. 666-679. [1] 
[2]. Yong-Bo Shao and Zhen-Bin Cao (2005). “Experimental and numerical analysis of fatigue behaviour for tubular K-joints”, Structural Engineering & Mechanics, An International Journal, Vol. 19, No. 6, pp. 639-652.
[3]. Yong-Bo Shao (2006). “Analysis of stress intensity factor (SIF) for cracked tubular K-joints subjected to balanced axial load”, Engineering Failure Analysis, Vol. 13, No. 1, pp. 44-64.
[4]. Shao Yong-Bo (2007). “Geometrical effect on the stress distribution along weld toe for tubular T- and K-joints under axial loading”, Journal of Constructional Steel Research, Vol. 63, No. 9, pp. 1351-1360.
[5]. Shao Yong-Bo, Du Zhi-Fu, Lie Seng-Tjhen. (2009). ”Prediction on hot spot stress distribution for tubular K-joints under basic loadings”, Journal of Constructional Steel Research, Vol. 65, No. 10-11, pp. 2011-2026.
[6]. Shao Yong-Bo, Lie Seng-Tjhen, Chiew Sing-Ping. (2010). “Static strength of tubular T-joints with reinforced chord under axial compression”, Advances in Structural Engineering, Vol. 13, No. 2, pp. 369-378.
[7]. Yong-Bo Shao, Tao Li, Seng-Tjhen Lie, Sing-Ping Chiew. (2011). “Hysteretic behaviour of square tubular T-joints with chord reinforcement under axial cyclic loading”, Journal of Constructional Steel Research, Vol. 67, No. 1, pp. 140-149.
[8]. Yong-Bo Shao, Seng-Tjhen Lie, Sing-Ping Chiew, Yan-Qing Cai. (2011). “Hysteretic performance of circular hollow section tubular joints with collar-plate reinforcement”, Journal of Constructional Steel Research, Vol. 67, No. 12, pp. 1936-1947.
[9]. Yang Jie, Shao Yongbo*, Chen Cheng. (2012). “Static strength of chord reinforced tubular Y-joints under axial loading”, Marine Structures, Vol. 29, No. 1, pp. 226-245.
[10]. Chen Cheng, Shao Yongbo*, Yang Jie. (2013). “Experimental and numerical study on fire resistance of circular tubular T-joints”, Journal of Constructional Steel Research, Vol. 85, No. 6, pp. 24-39.
[11]. Shu-bin He, Yong-bo Shao*, Hong-yan Zhang, Dong-ping Yang, Feng-le Long. (2013). “Experimental study on circular hollow section (CHS) tubular K-joints at elevated temperature”, Engineering Failure Analysis, Vol. 34, pp. 204-216.
[12]. J. Yang, Y. B. Shao*, C. Chen. (2014). “Experimental study on fire resistance of square hollow section (SHS) tubular T-joint under axial compression”, Advanced Steel Construction, Vol. 10, No. 1, pp. 72-84.
[13]. Shubin He, Yongbo Shao*, Hongyan Zhang. (2015). Evaluation on fire resistance of tubular K-joints based on critical temperature method. Journal of Constructional Steel Research, Vol. 115, pp. 398-406
[14]. Shubin He, Yongbo Shao*, Hongyan Zhang, Qingli Wang. (2015). “Parametric study on performance of circular tubular K-joints at elevated temperature”, Fire Safety Journal, Vol. 71, pp. 174-186.
[15]. Hongqing Liu, Yongbo Shao*, Ling Lu, Qingli Wang. (2015). “Hysteresis of concrete-filled circular tubular (CFCT) T-joints under axial load”. Steel & Composite Structures,Vol. 18, No. 3, pp. 739-756.
[16]. C. Chen, Y.B. Shao*, J. Yang. (2015). “Study on fire resistance of circular hollow section (CHS) T-joint stiffened with internal rings”, Thin-Walled Structures, Vol. 92, pp. 104-114.
[17]. M.J. Cui, Y.B. Shao*. (2015). “Residual static strength of cracked concrete-filled circular steel tubular (CFCST) T-joint”, Steel & Composite Structures, Vol. 18, No. 4, pp. 1045-1062.
[18]. Y. Chen, Y.B. Shao*. (2016). “Static strength of square tubular Y-joints with reinforced chord under axial compression”, Advanced Steel Construction, Vol. 12, No. 3, pp. 211-226.
[19]. Yongbo Shao, Haicheng Zhao, Dongping Yang. (2016). “Discussion on two methods for determining static strength of tubular T-joints at elevated temperature”, Advances in Structural Engineering, Vol. 19, pp. 1-18.
[20]. Yong-Bo Shao. (2016). “Static strength of collar-plate reinforced tubular T-joints under axial loading”, Steel and Composite Structures, Vol. 21, No. 2, pp. 323-342.
[21]. Y.B. Shao, Y.M. Wang, D.P. Yang. (2016). “Hysteretic behaviour of circular tubular T-joints with local chord reinforcement”, Steel and Composite Structures, Vol. 21, No. 5, pp. 1017-1029.
[22]. Yongbo Shao, Yijie Zheng, Haicheng Zhao, Dongping Yang. (2016). “Performance of tubular T-joints at elevated temperature by considering effect of chord compressive stress”, Thin-Walled Structures, Vol. 98, pp. 533-546.
[23]. Y.B. Shao, Y.M. Wang. (2016). “Experimental study on shear behavior of I-girder with concrete-filled tubular flange and corrugated web”, Steel and Composite Structures, Vol. 22, No. 6, pp. 1465-1486.
[24]. Yongbo Shao, Yamin Wang. (2017). “Experimental study on static behavior of I-girder with concrete-filled rectangular flange and corrugated web under concentrated load at mid-span”, Engineering Structures, Vol. 130, pp. 124-141.
[25]. Yamin Wang, Yongbo Shao*, Dongping Yang. Static test on failure process of tubular T-joints with initial fatigue crack. Steel and Composite Structures, 2017, 24(5): 615-633.
[26]. Yamin Wang, Yongbo Shao*, Yifang Cao. Static behavior of steel tubular Structures considering local joint flexibility. Steel and Composite Structures, 2017, 24(4): 425-439.
[27]. Yongbo Shao, Haicheng Zhao, Dongping Yang. Discussion on two methods for determining static strength of tubular T-joints at elevated temperature. Advances in Structural Engineering, 2017, 20(5): 704-721.
[28]. Yongbo Shao, Shubin He, Hongyan Zhang, Dongping Yang. Hysteretic behavior of tubular T-joints after exposure to elevated temperature. Ocean Engineering, 2017, 129: 57-67.
[29]. Yongbo Shao, Shubin He, Dongping Yang. Prediction on static strength for CHS tubular K-joints at elevated temperature. KSCE Journal of Civil Engineering, 2017, 21(3): 900-911.
[30]. Yamin Wang, Yongbo Shao*. Stress analysis of a new steel-concrete composite I-girder. Steel and Composite Structures, 2018, Vol. 28, No. 1, pp. 51-61.
[31]. Hassanein M.F.*, Shao Y.-B.*, Elchalakani M., El Hadidy A.M. Flexural buckling of circular concrete-filled stainless steel tubular columns. Marine Structures, 2020, 71, 102722.
[32]. Y.M. Wang, Y.B. Shao*, C. Chen, U. Katwal. Prediction of flexural and shear yielding strength of short span I-girders with concrete-filled tubular flanges and corrugated web – I: Experimental test. Thin-Walled Structures, 2020, 148, 106592.
[33]. Y.M. Wang, Y.B. Shao*, C. Chen, U. Katwal. Prediction of flexural and shear yielding strength of short span I-girders with concrete-filled tubular flanges and corrugated web-II: Numerical simulation and theoretical analysis. Thin-Walled Structures, 2020, 148, 106593.
[34]. Yong-Bo Shao, Yu-Mei Zhang, M.F. Hassanein*. Strength and behaviour of laterally-unrestrained S690 high-strength steel hybrid girders with corrugated webs. Thin-Walled Structures, 2020, 150, 106688.
[35]. M.F. Hassanein, A.A. Elkawas, Yong-Bo Shao*, M. Elchalakani, A.M. El Hadidy. Lateral-Torsional buckling behaviour of mono-symmetric S460 corrugated web bridge girders. Thin-Walled Structures, 2020, 153, 106803.
[36]. M.F. Hassanein, A.A. Elkawas, Yong-Bo Shao*. Assessment of the suitability of Eurocode design model for corrugated web girders with slender flanges. Structures, 2020, 27, 1551-1569.
[37]. Yong Bo Shao, Hazem Samih Mohamed*, Li Wang, Cheng Song Wu. Experimental and numerical investigation on stiffened rectangular hollow flange beam. International Journal of Steel Structures, 2020.
[38]. Gao Xudong, Shao Yongbo*, Xie Liyuan, Yang Dongping. Behavior of API 5L X56 submarine pipes under transverse impact. Ocean Engineering, 2020, 206, 107337.
[39]. HS Mohamed, YB Shao*, C Cheng, MY Shi. (2021). “Static strength of CFRP-strengthened tubular TT-joints containing initial local corrosion defect”. Ocean Engineering, 236, 109484.
[40]. Jialing OU, Yongbo Shao*. “Compressive strength of circular concrete filled steel tubular stubs strengthened with CFRP”. Steel and Composite Structures, 2021, 39(2): 189-200.
[41]. Yu-Mei Zhang, M.F. Hassanein, Marina Bock, Yong-Bo Shao*. Global buckling of S690 transversely-stiffened plate girders with slender webs: behaviour and design. Thin-Walled Structures, 2021, 161, 107519.
[42]. Hassanein M. F., Elkawas A. A., Bock Marina, Shao Yong-Bo*, Elchalakani M. Effect of using slender flanges on EN 1993-1-5 design model of mono-symmetric S460 corrugated web bridge girders. Structures, 2021, 33: 330-342.
[43]. Kuan Peng, Yong-bo Shao*, Qing-li Wang, Yi-fang Cao. Hysteretic behavior and restoring force model of specimens of square concrete-filled CFRP-steel tubular beam-column. International journal of Steel Structures, 2022.
[44]. Xudong Gao, Yongbo Shao*, Cheng Chen, Hongmei Zhu, Kangshuai Li. Experimental and numerical investigation on transverse impact resistance beahviour of pipe-in-pipe submarine pipelines after service time. Ocean Engineering, 2022, 248, 110868.
[45]. Xiaodong Xu, Yongbo Shao*, Xudong Gao, Hazem Samih Mohamed. Stress concentration factor (SCF) of CHS gap TT-joints reinforced with CFRP. Ocean Engineering, 2022, 247, 110722.
[46]. Yipeng Du, Yongbo Shao*, Yifang Cao. Performance of repaired steel plate shear wall with earthquake-induced damage. Journal of Constructional Steel Research, 2022, 190, 107149.
[47]. Hongmei Zhu, Yongbo Shao*, Guoqiang Chi, Xudong Gao, Kangshuai Li. Simplified bar-system model for tubular structures by considering local joint flexibility. Marine Structures, 2022, 81, 103122.
[48]. Amany Refat Elsisy, Yong-bo Shao*, Man Zhou, M.F. Hassanein. A study on the compressive strengths of stiffened and unstiffened concrete-filled austenitic stainless steel tubular short columns. Ocean Engineering, 2022, 248, 110793.
[49]. Mostat Fahmi Hassanein, Yongbo Shao, Man Zhou. Behaviour and design of trapezoidally corrugated web girders for bridge construction. Elsevier Publisher, 2022.
[50]. T/CECS 785-2020. 鋼管混凝土桁式混合結構技術規程. 中國建築工業出版社, 2021. (參編)

邵永波主講課程

《鋼結構設計原理》(本科)、《高等鋼結構理論與設計》(研究生) [1] 
參考資料