複製鏈接
請複製以下鏈接發送給好友

穆斯堡爾譜學

(應用穆斯堡爾效應研究物質的微觀結構的學科)

鎖定
穆斯堡爾譜學(Mössbauer spectroscopy)是應用穆斯堡爾效應研究物質的微觀結構的學科。穆斯堡爾效應即γ射線的無反衝共振吸收,於1957年由德國物理學家穆斯堡爾發現,並於次年得到實驗驗證。穆斯堡爾效應對環境的依賴性非常高,常利用多普勒效應對γ射線光子的能量進行調製,通過調整γ射線輻射源和吸收體之間的相對速度使其發生共振吸收。吸收率(或者透射率)與相對速度之間的變化曲線叫做穆斯堡爾譜。穆斯堡爾譜的能量分辨率非常高,可以用來研究原子核與周圍環境的超精細相互作用。
中文名
穆斯堡爾譜學
外文名
Mössbauer spectroscopy
應    用
穆斯堡爾效應研究物質的微觀結構
發    現
穆斯堡爾
原    理
γ射線譜學

穆斯堡爾譜學簡介

穆斯堡爾譜學(Mössbauer spectroscopy)是應用穆斯堡爾效應研究物質的微觀結構的學科。穆斯堡爾效應即γ射線的無反衝共振吸收,於1957年由德國物理學家穆斯堡爾發現,並於次年得到實驗驗證。穆斯堡爾效應對環境的依賴性非常高,常利用多普勒效應對γ射線光子的能量進行調製,通過調整γ射線輻射源和吸收體之間的相對速度使其發生共振吸收。吸收率(或者透射率)與相對速度之間的變化曲線叫做穆斯堡爾譜。穆斯堡爾譜的能量分辨率非常高,可以用來研究原子核與周圍環境的超精細相互作用。
穆斯堡爾譜學中最常用的是57Fe的能量為14.4 keV 的γ射線,能量分辨率可以達到10-13Sn也經常用到。穆斯堡爾譜學在物理學化學生物學地質學冶金學礦物學地質學等領域都得到廣泛應用。近年來穆斯堡爾譜學也在一些新興學科,比如材料科學表面科學領域,開拓了廣泛的應用前景。 [1] 

穆斯堡爾譜學穆斯堡爾譜儀

測量穆斯堡爾譜的儀器稱為穆斯堡爾譜儀,由三個主要部件組成。一個移動的γ射線光源,用來產生多普勒效應;一個準直器得到平行光;以及一個檢測器。
NASA火星探測漫遊者計劃的兩個火星車裝備有小型的穆斯堡爾譜儀 [1] 

穆斯堡爾譜學穆斯堡爾效應

穆斯堡爾效應(Mössbauer effect),即原子核輻射的無反衝共振吸收。這個效應首先是由德國物理學家穆斯堡爾於1958年首次在實驗中實現的,因此被命名為穆斯堡爾效應。應用穆斯堡爾效應可以研究原子核與周圍環境的超精細相互作用,是一種非常精確的測量手段,其能量分辨率可高達10,並且抗干擾能力強、實驗設備和技術相對簡單、對樣品無破壞。由於這些特點,穆斯堡爾效應一經發現,就迅速在物理學化學生物學地質學冶金學礦物學地質學等領域得到廣泛應用。近年來穆斯堡爾效應也在一些新興學科,如材料科學表面科學開拓了應用前景。
理論上,當一個原子核由激發態躍遷基態,發出一個γ射線光子。當這個光子遇到另一個同樣的原子核時,就能夠被共振吸收。但是實際情況中,處於自由狀態的原子核要實現上述過程是困難的。因為原子核在放出一個光子的時候,自身也具有了一個反衝動量,這個反衝動量會使光子的能量減少。同樣原理,吸收光子的原子核光子由於反衝效應,吸收的光子能量會有所增大。這樣造成相同原子核的發射譜和吸收譜有一定差異,所以自由的原子核很難實現共振吸收。迄今為止,人們還沒有在氣體和不太粘稠的液體中觀察到穆斯堡爾效應。
1957年底,穆斯堡爾提出實現γ射線共振吸收的關鍵在於消除反衝效應。如果在實驗中把發射和吸收光子的原子核置於固體晶格中,那麼出現反衝效應的就不再是單一的原子核,而是整個晶體。由於晶體的質量遠遠大於單一的原子核的質量,反衝能量就減少到可以忽略不計的程度,這樣就可以實現穆斯堡爾效應。實驗中原子核在發射或吸收光子時無反衝的概率叫做無反衝分數f,無反衝分數與光子能量、晶格的性質以及環境的温度有關。
穆斯堡爾使用Os()晶體作γ射線放射源,用Ir()晶體作吸收體,於1958年首次在實驗上實現了原子核的無反衝共振吸收。為減少熱運動對結果的影響,放射源和吸收源都冷卻到88K。放射源安裝在一個轉盤上,可以相對吸收體作前後運動,用多普勒效應調節γ射線的能量。Os經過β衰變成為Ir的激發態,Ir的激發態可以發出能量為129 keV的γ射線,被吸收體吸收。實驗發現,當轉盤不動,即相對速度為0時共振吸收最強,並且吸收譜線的寬度很窄,每秒幾釐米的速度就足以破壞共振。除了Ir外,穆斯堡爾還觀察到了ReHfEr等原子核的無反衝共振吸收。由於這些工作,穆斯堡爾被授予1961年的諾貝爾物理學獎
截至2005年上半年,人們已經在固體和粘稠液體中實現了穆斯堡爾效應,樣品的形態可以是晶體非晶體薄膜、固體表層、粉末顆粒、冷凍溶液等等,涉及40餘種元素90餘種同位素的110餘個躍遷。然而大部分同位素只能在低温下才能實現穆斯堡爾效應,有的需要使用液氮甚至液氦對樣品進行冷卻。在室温下只有FeSn、Eu三種同位素能夠實現穆斯堡爾效應。其中Fe的 14.4 keV 躍遷是人們最常用的、也是研究最多的譜線。
穆斯堡爾效應對環境的依賴性很高。細微的環境條件差異會對穆斯堡爾效應產生顯著的影響。在實驗中,為減少環境帶來的影響,需要利用多普勒效應對γ射線光子的能量進行細微的調製。具體做法是令γ射線輻射源和吸收體之間具有一定的相對速度,通過調整v的大小來略微調整γ射線的能量,使其達到共振吸收,即吸收率達到最大,透射率達到最小。透射率與相對速度之間的變化曲線叫做穆斯堡爾譜。應用穆斯堡爾譜可以清楚地檢查到原子核能級的移動和分裂,進而得到原子核的超精細場、原子的價態對稱性等方面的信息。應用穆斯堡爾譜研究原子核與核外環境的超精細相互作用的學科叫做穆斯堡爾譜學 [2] 
參考資料
  • 1.    Chen, Y.-L.; Yang, D.-P. (2007). "Recoilless Fraction and Second-Order Doppler Effect". Mössbauer Effect in Lattice Dynamics. John Wiley & Sons. doi:10.1002/9783527611423.ch5. ISBN 978-3-527-61142-3.
  • 2.    Klingelhöfer, G. (2004). "Mössbauer in situ studies of the surface of Mars". Hyperfine Interactions. 158 (1–4): 117–124. Bibcode:2004HyInt.158..117K. doi:10.1007/s10751-005-9019-1.