複製鏈接
請複製以下鏈接發送給好友

德克羅蒙温度傳感器

鎖定
德克羅蒙温度傳感器是一種檢測裝置,能感受到被測量的信息,並能將檢測感受到的信息,按一定規律變換成為電信號或其他所需形式的信息,以滿足信息的傳輸、處理、存儲、顯示、記錄和控制等要求。它是實現自動檢測和自動控制的首要環節。
中文名
德克羅蒙温度傳感器
譯    名
transducer / sensor 
簡    稱
温度傳感器
分    類
機械儀器

德克羅蒙温度傳感器傳感器的定義

國家標準GB7665-87對傳感器下的定義是:“能感受規定的被測量並按照 [1]  一定的規律轉換成可用信號的器件或裝置,通常由敏感元件和轉換元件組成”。

德克羅蒙温度傳感器敏感元件的分類

①物理類,基於力、熱、光、電、磁和聲等物理效應。②化學類,基於化學反應的原理。③生物類,基於酶、抗體、和激素等分子識別功能。通常據其基本感知功能可分為熱敏元件、光敏元件、氣敏元件、力敏元件、磁敏元件、濕敏元件、聲敏元件、放射線敏感元件、色敏元件和味敏元件等十大類(還有人曾將敏感元件分46類)。

德克羅蒙温度傳感器傳感器靜態特性

傳感器的靜態特性是指對靜態的輸入信號,傳感器的輸出量與輸入量之間所具有相互關係。因為這時輸入量和輸出量都和時間無關,所以它們之間的關係,即傳感器的靜態特性可用一個不含時間變量的代數方程,或以輸入量作橫座標,把與其對應的輸出量作縱座標而畫出的特性曲線來描述。表徵傳感器靜態特性的主要參數有:線性度、靈敏度、遲滯、重複性、漂移等。
(1)線性度:指傳感器輸出量與輸入量之間的實際關係曲線偏離擬合直線的程度。定義為在全量程範圍內實際特性曲線與擬合直線之間的最大偏差值與滿量程輸出值之比。
(2)靈敏度:靈敏度是傳感器靜態特性的一個重要指標。其定義為輸出量的增量與引起該增量的相應輸入量增量之比。用S表示靈敏度。
(3)遲滯:傳感器在輸入量由小到大(正行程)及輸入量由大到小(反行程)變化期間其輸入輸出特性曲線不重合的現象成為遲滯。對於同一大小的輸入信號,傳感器的正反行程輸出信號大小不相等,這個差值稱為遲滯差值。
(4)重複性:重複性是指傳感器在輸入量按同一方向作全量程連續多次變化時,所得特性曲線不一致的程度。
(5)漂移:傳感器的漂移是指在輸入量不變的情況下,傳感器輸出量隨着時間變化,次現象稱為漂移。產生漂移的原因有兩個方面:一是傳感器自身結構參數;二是周圍環境(如温度、濕度等)。

德克羅蒙温度傳感器傳感器動態特性

所謂動態特性,是指傳感器在輸入變化時,它的輸出的特性。在實際工作中,傳感器的動態特性常用它對某些標準輸入信號的響應來表示。這是因為傳感器對標準輸入信號的響應容易用實驗方法求得,並且它對標準輸入信號的響應與它對任意輸入信號的響應之間存在一定的關係,往往知道了前者就能推定後者。最常用的標準輸入信號有階躍信號和正弦信號兩種,所以傳感器的動態特性也常用階躍響應和頻率響應來表示。

德克羅蒙温度傳感器傳感器的線性度

通常情況下,傳感器的實際靜態特性輸出是條曲線而非直線。在實際工作中,為使儀表具有均勻刻度的讀數,常用一條擬合直線近似地代表實際的特性曲線、線性度(非線性誤差)就是這個近似程度的一個性能指標。
擬合直線的選取有多種方法。如將零輸入和滿量程輸出點相連的理論直線作為擬合直線;或將與特性曲線上各點偏差的平方和為最小的理論直線作為擬合直線,此擬合直線稱為最小二乘法擬合直線。

德克羅蒙温度傳感器傳感器的靈敏度

靈敏度是指傳感器在穩態工作情況下輸出量變化△y對輸入量變化△x的比值。
它是輸出一輸入特性曲線的斜率。如果傳感器的輸出和輸入之間顯線性關係,則靈敏度S是一個常數。否則,它將隨輸入量的變化而變化。
靈敏度的量綱是輸出、輸入量的量綱之比。例如,某位移傳感器,在位移變化1mm時,輸出電壓變化為200mV,則其靈敏度應表示為200mV/mm。
當傳感器的輸出、輸入量的量綱相同時,靈敏度可理解為放大倍數。
提高靈敏度,可得到較高的測量精度。但靈敏度愈高,測量範圍愈窄,穩定性也往往愈差。

德克羅蒙温度傳感器傳感器的分辨力

分辨力是指傳感器可能感受到的被測量的最小變化的能力。也就是説,如果輸入量從某一非零值緩慢地變化。當輸入變化值未超過某一數值時,傳感器的輸出不會發生變化,即傳感器對此輸入量的變化是分辨不出來的。只有當輸入量的變化超過分辨力時,其輸出才會發生變化。
通常傳感器在滿量程範圍內各點的分辨力並不相同,因此常用滿量程中能使輸出量產生階躍變化的輸入量中的最大變化值作為衡量分辨力的指標。上述指標若用滿量程的百分比表示,則稱為分辨率。分辨率與傳感器的穩定性有負相相關性。

德克羅蒙温度傳感器電阻式傳感器

電阻式傳感器是將被測量,如位移、形變、力、加速度、濕度、温度等這些物理量轉換式成電阻值這樣的一種器件。主要有電阻應變式、壓阻式、熱電阻、熱敏、氣敏、濕敏等電阻式傳感器件。

德克羅蒙温度傳感器稱重傳感器

[1]稱重傳感器是一種能夠將重力轉變為電信號的力--電轉換裝置,是電子衡器的一個關鍵部件。
能夠實現力--電轉換的傳感器有多種,常見的有電阻應變式、電磁力式和電容式等。電磁力式主要用於電子天平,電容式用於部分電子吊秤,而絕大多數衡器產品所用的還是電阻應變式稱重傳感器。電阻應變式稱重傳感器結構較簡單,準確度高,適用面廣,且能夠在相對比較差的環境下使用。因此電阻應變式稱重傳感器在衡器中得到了廣泛地運用。

德克羅蒙温度傳感器電阻應變式傳感器

傳感器中的電阻應變片具有金屬的應變效應,即在外力作用下產生機械形變,從而使電阻值隨之發生相應的變化。電阻應變片主要有金屬和半導體兩類,金屬應變片有金屬絲式、箔式、薄膜式之分。半導體應變片具有靈敏度高(通常是絲式、箔式的幾十倍)、橫向效應小等優點。

德克羅蒙温度傳感器壓阻式傳感器

壓阻式傳感器是根據半導體材料的壓阻效應在半導體材料的基片上經擴散電阻而製成的器件。其基片可直接作為測量傳感元件,擴散電阻在基片內接成電橋形式。當基片受到外力作用而產生形變時,各電阻值將發生變化,電橋就會產生相應的不平衡輸出。
用作壓阻式傳感器的基片(或稱膜片)材料主要為硅片和鍺片,硅片為敏感 材料而製成的硅壓阻傳感器越來越受到人們的重視,尤其是以測量壓力和速度的固態壓阻式傳感器應用最為普遍。

德克羅蒙温度傳感器熱電阻傳感器

熱電阻測温是基於金屬導體的電阻值隨温度的增加而增加這一特性來進行温度測量的。熱電阻大都由純金屬材料製成,目前應用最多的是鉑和銅,此外,現在已開始採用鎳、錳和銠等材料製造熱電阻。
熱電阻傳感器主要是利用電阻值隨温度變化而變化這一特性來測量温度及與温度有關的參數。在温度檢測精度要求比較高的場合,這種傳感器比較適用。目前較為廣泛的熱電阻材料為鉑、銅、鎳等,它們具有電阻温度係數大、線性好、性能穩定、使用温度範圍寬、加工容易等特點。用於測量-200℃~+500℃範圍內的温度。

德克羅蒙温度傳感器熱電阻傳感器分類

1.NTC熱電阻傳感器:
該類傳感器為負温度係數傳感器,即,傳感器阻值隨温度的升高而減小;
2.PTC熱電阻傳感器:
該類傳感器為正温度係數傳感器,即,傳感器阻值隨温度的升高而增大。
温度傳感器

德克羅蒙温度傳感器室温管温傳感器

室温傳感器用於測量室內和室外的環境温度,管温傳感器用於測量蒸發器和冷凝器的管壁温度。室温傳感器和管温傳感器的形狀不同,但温度特性基本一致。按温度特性劃分,目前美的使用的室温管温傳感器有二種類型:1、常數B值為4100K±3%,基準電阻為25℃對應電阻10KΩ±3%。温度越高,阻值越小;温度越低,阻值越大。離25℃越遠,對應電阻公差範圍越大;在0℃和55℃對應電阻公差約為±7%;而0℃以下及55℃以上,對於不同的供應商,電阻公差會有一定的差別。茲附“南韓新基”傳感器的温度與電阻的對應關係表(中間為標稱值,左右分別為最小最大值):-10℃→(57.1821—62.2756—67.7617)KΩ;-5℃→(48.1378—46.5725—50.2355)KΩ;0℃→(32.8812—35.2024—37.6537)KΩ;5℃→(25.3095—26.8778—28.5176)KΩ;10℃→(19.6624—20.7184—21.8114)KΩ;15℃→(15.4099—16.1155—16.8383)KΩ;20℃→(12.1779—12.6431—13.1144)KΩ;30℃→(7.67922—7.97078—8.26595)KΩ;35℃→(6.12564—6.40021—6.68106)KΩ;40℃→(4.92171—5.17519—5.43683)KΩ;45℃→(3.98164—4.21263—4.45301)KΩ;50℃→(3.24228—3.45097—3.66978)KΩ;55℃→(2.65676—2.84421—3.04214)KΩ;60℃→(2.18999—2.35774—2.53605)KΩ。除個別老產品外,美的空調電控使用的室温管温傳感器均使用這種類型的傳感器。常數B值為3470K±1%,基準電阻為25℃對應電阻5KΩ±1%。同樣,温度越高,阻值越小;温度越低,阻值越大。離25℃越遠,對應電阻公差範圍越大。茲附“日本北陸”傳感器的温度與電阻的對應關係表(中間為標稱值,左右分別為最小最大值):-10℃→(22.1498—22.7155—23.2829)KΩ;0℃→(13.9408—14.2293—14.5224)KΩ;10℃→(9.0344—9.1810—9.3290)KΩ;20℃→(6.0125—6.0850—6.1579)KΩ;30℃→(4.0833—4.1323—4.1815)KΩ;40℃→(2.8246—2.8688—2.9134)KΩ;50℃→(1.9941—2.0321—2.0706)KΩ;60℃→(1.4343—1.4666—1.4994)KΩ。這種類型的傳感器僅用於個別老產品,如RF7.5WB、T-KFR120C、KFC23GWY等。

德克羅蒙温度傳感器排氣温度傳感器

排氣温度傳感器用於測量壓縮機頂部的排氣温度,常數B值為3950K±3%,基準電阻為90℃對應電阻5KΩ±3%。茲附“日本芝蒲”傳感器的温度與電阻的對應關係表(中間為標稱值,左右分別為最小最大值):-30℃→(823.3—997.1—1206)KΩ;-20℃→(456.9—542.7—644.2)KΩ;-10℃→(263.7—307.7—358.8)KΩ;0℃→(157.6—180.9—207.5)KΩ;10℃→(97.09—109.8—124.0)KΩ;20℃→(61.61—68.66—76.45)KΩ;25℃→(49.59—54.89—60.70)KΩ;30℃→(40.17—44.17—48.53)KΩ;40℃→(26.84—29.15—31.63)KΩ;50℃→(18.35—19.69—21.12)KΩ;60℃→(12.80—13.59—14.42)KΩ;70℃→(9.107—9.589—10.05)KΩ;80℃→(6.592—6.859—7.130)KΩ;100℃→(3.560—3.702—3.846)KΩ;110℃→(2.652—2.781—2.913)KΩ;120℃→(2.003—2.117—2.235)KΩ;130℃→(1.532—1.632—1.736)KΩ。

德克羅蒙温度傳感器模塊温度傳感器

模塊温度傳感器用於測量變頻模塊(IGBT或IPM)的温度,目前用的感温頭的型號是602F-3500F,基準電阻為25℃對應電阻6KΩ±1%。幾個典型温度的對應阻值分別是:-10℃→(25.897—28.623)KΩ;0℃→(16.3248—17.7164)KΩ;50℃→(2.3262—2.5153)KΩ;90℃→(0.6671—0.7565)KΩ。
温度傳感器的種類很多,現在經常使用的有熱電阻:PT100、PT1000、Cu50、Cu100;熱電偶:B、E、J、K、S等。温度傳感器不但種類繁多,而且組合形式多樣,應根據不同的場所選用合適的產品。
測温原理:根據電阻阻值、熱電偶的電勢隨温度不同發生有規律的變化的原理,我們可以得到所需要測量的温度值。

德克羅蒙温度傳感器光敏傳感器

光敏傳感器是最常見的傳感器之一,它的種類繁多,主要有:光電管、光電倍增管、光敏電阻、光敏三極管、太陽能電池、紅外線傳感器紫外線傳感器、光纖式光電傳感器、色彩傳感器、CCD和CMOS圖像傳感器等。它的敏感波長在可見光波長附近,包括紅外線波長和紫外線波長。光傳感器不只侷限於對光的探測,它還可以作為探測元件組成其他傳感器,對許多非電量進行檢測,只要將這些非電量轉換為光信號的變化即可。光傳感器是目前產量最多、應用最廣的傳感器之一,它在自動控制和非電量電測技術[2]中佔有非常重要的地位。最簡單的光敏傳感器是光敏電阻,當光子衝擊接合處就會產生電流。
參考資料