複製鏈接
請複製以下鏈接發送給好友

賀超英

鎖定
賀超英,男,博士,研究員,博士生導師。中國科學院植物研究所研究員、博導,中國科學院“百人計劃”入選者。於1995年在西北師範大學獲得理學學士學位;1998年中國林業科學院亞熱帶林業研究所獲得農學碩士學位;2001年在中國科學院遺傳研究所獲得理學博士學位。2001年10月受邀到德國Max-Planck-Institute for Plant Breeding Research (Cologne) 植物分子遺傳系從事博士後研究工作,並於2006年5月在該系成立功能進化研究組,受聘為研究組長;2008年1月以“百人計劃”引進到中國科學院植物研究所繫統與進化植物學國家重點實驗室工作,成立了功能進化發育生物學創新研究組,任首席研究員。 [1] 
中文名
賀超英
國    籍
中國
出生日期
1973年1月
出生地
甘肅慶陽縣
性    別
職    稱
研究員
部    門
系統與進化植物學國家重點實驗室
課題組
功能進化發育生物學創新研究組
職    務
博士生導師

賀超英簡介

職稱: 研究員、博士生導師 [1] 
出生地:甘肅慶陽縣 [1] 
出生年月:1973年1月 [1] 
部門:系統與進化植物學國家重點實驗室 [1] 
課題組:功能進化發育生物學創新研究組 [1] 
中國科學院植物研究所研究員、博導,中國科學院“百人計劃”入選者。於1995年在西北師範大學獲得理學學士學位;1998年中國林業科學院亞熱帶林業研究所獲得農學碩士學位;2001年在中國科學院遺傳研究所獲得理學博士學位。2001年10月受邀到德國Max-Planck-Institute for Plant Breeding Research (Cologne) 植物分子遺傳系從事博士後研究工作,並於2006年5月在該系成立功能進化研究組,受聘為研究組長;2008年1月以“百人計劃”引進到中國科學院植物研究所繫統與進化植物學國家重點實驗室工作,成立了功能進化發育生物學創新研究組,任首席研究員。 [1] 

賀超英研究方向

研究組主要從事功能進化發育生物學 (functional evo-devo) 和功能基因組學 (functional genomics) 方面的研究工作。研究興趣主要涉及生物多樣性與物種起源進化的分子機理和重要農(園)藝性狀自然變異、馴化和作物設計(crop design)的分子基礎。當前的主要研究內容包括:(1)植物花果多樣性及進化機理和(2)農作物重要基因功能進化及其挖掘利用等方面研究。 [1] 
1. 植物花果多樣性和進化機理的研究 [1] 
這部分工作以茄科植物為主要試材,旨在闡明一些全新花形態結構(floral morphological novelties)或進化創新結構(evolutionary innovations)起源的分子基礎及其相關生物大分子互作網絡、複合體和基因家族的功能進化,並揭示果實大小等自然變異遺傳調控機制,最終理解物種形成和生物多樣性的進化機制等科學問題。現擁有大量的茄科植物資源和Physalis floridana的突變體庫,因此主要工作包括以反向遺傳學的策略來揭示一些重要調控基因家族成員如MAD-box基因在茄科植物形態建成過程中作用和分子分析一些具有進化信息的酸漿突變體。主要內容有:全新花形態結構的功能進化和選擇機制、漿果大小進化的分子機理和花果控制網絡的功能進化(保守性和多樣性)等研究。 [1] 
2. 農作物重要基因功能進化及其挖掘利用研究
瞄準國家發展戰略需求,緊密圍繞重要農作物如大豆和水稻等的重要目標性狀如抗逆性(包括生物脅迫和非生物脅迫)和產量控制等,通過結構基因組學比較基因組學功能基因組學的研究,旨在挖掘重要功能基因並探討它們在轉基因作物育種設計中的應用前景。主要研究工作包括相關基因的大規模克隆、分子分析和表達研究等,闡明重要轉錄因子和重要基因家族成員在這些作物中的演化模式及其與相應性狀自然變異趨勢的相關性研究,從而篩選具有重要育種價值的調控基因和功能基因並進行轉基因功能驗證分析,進而弄清楚它們作用的分子細節,為農作物新品種培育奠定基礎。 [1] 

賀超英研究論文

王永軍, 東方陽, 王修強, 楊雅麟, 喻德躍, 蓋鈞鎰, 吳曉雷, 賀超英, 張勁松, 陳受宜. (2004). 大豆5個花葉病毒株系抗性基因的定位. 遺傳學報 31(1): 87-90 [1] 
王永軍,吳曉雷,賀超英,張勁松,陳受宜,蓋鈞鎰. (2003). 大豆作圖羣體檢驗與調整後構建的遺傳圖譜. 中國農業科學 36(11): 1254-1260 [1] 
賀超英, 王偉權, 東方陽, 張勁松, 蓋鈞鎰, 陳受宜. (2001). 大豆1,5-二磷酸核酮糖羧化酶小亞基基因的轉錄表達分析. 科學通報 46(16): 1375-1380 [1] 
賀超英, 陳益泰. (2002). 榿木種源苗期生長和固N能力的變異. 林業科學研究 15(6): 680-686
賀超英, 張志永, 王永軍, 鄭先武, 喻得躍, 陳受宜, 蓋鈞鎰. (2001). 利用微衞星標記評估大豆重組近交系NJRIKY. 遺傳學報 28(2): 171-181 [1] 
賀超英, 陳受宜. (2001). 基因組學方法在植物抗逆性研究中的應用. 生物工程進展 21(1): 29-32 [1] 
He CY, Wu XL, Zhang JS, Dongfang Y, Du BX, Zhang ZY, Chen SY (2001). Isolation and characterization of a new defense gene from soybean. Sci. in China 44(4): 409-420
賀超英, 吳曉雷, 東方陽, 張勁松, 杜保興, 張志永, 陳受宜. (2001). 大豆中一個新防衞基因的克隆與鑑定. 中國科學C輯 31(3): 193-201 [1] 
He CY, Zhang ZY, Chen SY (2001). Isolation and characterization of soybean resistance gene analogs. Chinese Sci. Bulletin 46(23): 1984-1988 [1] 
賀超英, 張志永, 陳受宜. (2001). 大豆中NBS類抗病基因同源序列的分離與鑑定. 科學通報 46(12): 1017-1021
吳曉雷, 王永軍, 賀超英(同等貢獻), 陳受宜,蓋鈞鎰, 王學臣. (2001). 大豆重要農藝性狀的QTL分析. 遺傳學報 28(10): 947-955 [1] 
吳曉雷, 賀超英(同等貢獻), 王永軍, 張志永, 東方陽, 張勁松, 陳受宜, 蓋鈞鎰. (2001). 大豆遺傳圖譜的構建和分析. 遺傳學報 28(11): 1051-1061 [1] 
吳曉雷, 賀超英, 陳受宜, 莊炳昌, 王克晶, 王學臣. (2001). 用SSR分子標記研究大豆屬種間親緣進化關係. 遺傳學報 28(4): 359-366 [1] 
吳曉雷, 賀超英, 陳受宜. (2001). 大豆屬遺傳多樣性和進化關係. 自然科學進展 11(7): 689-698 [1] 
Li QX, Li JG, Zhang L, Pan CC, Yang N, Sun K*, He CY*. 2021. Gibberellins are required for the dimorphic flower development in Viola philippica. Plant Sci., 303: 110749.
Gao HH, Li J, Wang L, Zhang JS, He CY*. 2020. Transcriptomic variation of the flower-fruit transition in Physalis and Solanum. Planta, 252: 28.
Wang Y, Gao HH, He LL, Zhu WW, Yan LX, Chen QS, He CY*. 2019. The PHOSPHATE1 genes participate in salt and Pi signaling pathways and play adaptive roles during soybean evolution. BMC Plant Biol., 19: 353.
Li J, Song CJ, He CY*. 2019. Chinese lantern in Physalis is an advantageous morphological novelty and improves plant fitness. Sci. Rep., 9: 596.
賀超英*,王麗,嚴立新,李巧茹,雍斌,朱韋韋. 2019. 果實起源與多樣化的進化發育機制. 中國科學: 生命科學, 49: 301-319.
Gao HH, Wang Y, Li W, Gu YZ, Lai YC, Bi YD, He CY*. 2018. Transcriptomic comparison reveals genetic variation potentially underlying seed developmental evolution of soybeans. J. Exp. Bot., 69: 5089-5104.
Hao ZZ, Gong PC, He CY*, Lin JX*. 2018. Peptide aptamers to inhibit protein function in plants. Trends Plant Sci., 23: 281-284.
Gong PC, Li J, He CY*. 2018. Exon junction complex (EJC) core genes play multiple developmental roles in Physalis floridana. Plant Mol. Biol., 98: 545-563.
Gu YZ, Li W, Jiang HW, Wang Y, Gao HH, Lai YC, Chen QS, He CY*. 2017. Differential expression of a WRKY gene between wild and cultivated soybeans correlates to seed size. Journal of Experimental Botany 68(11): 2717-2729.
Gong PC, Ao X, Liu GX, Cheng F-Y*, He CY*. 2017. Duplication and whorl-specific downregulation of the obligate AP3-PI heterodimer genes explain the origin of Paeonia lactiflora plants with spontaneous corolla mutation. Plant Cell Physiol. 58(3): 411-425.
Li QX, Huo QD, Wang J, Zhao J, Sun K*, He CY*. 2016. Expression of B-class MADS-box genes in response to variations in photoperiod is associated with chasmogamous and cleistogamous flower development in Viola philippica. BMC Plant Biol. 16: 151.
Wang Y, Gu YZ, Gao HH, Qiu LJ, Chang RZ, Chen SY, He CY*. 2016. Molecular and geographic evolutionary support for the essential role of GIGANTEAa in soybean domestication of flowering time. BMC Evol. Biol. 16: 79.
Gu YZ, Xing SL, He CY*. 2016. Genome-wide analysis indicates lineage-specific gene loss during Papilionoideae evolution. Genome Biol. Evol. 8(3): 635-648.
Zhao M, Gu YZ, He LL, Chen QS, He CY*. 2015. Sequence and expression variations suggest an adaptive role for the DA1-like gene family in the evolution of soybeans. BMC Plant Biol. 15: 120.
Zhou H, Cheng F-Y*, Wu J, He CY* .2015. Isolation and functional analysis of Flowering Locus T gene in tree peonies (PsFT). J. Amer. Soc. Hort. Sci. 140(3): 265-271.
Wang L, Li J, Zhao J, He CY* .2015. Evolutionary developmental genetics of fruit morphological variation within the Solanaceae. Front. Plant Sci. 6: 248.
Li ZC, He CY* .2015. Physalis floridana Cell Number Regulator1 encodes a cell membrane-anchored modulator of cell cycle and negatively controls fruit size. J. Exp. Bot. 66(1): 257-270.
Zhang SH, Zhang JS, Zhao J, He CY* .2015. Distinct subfunctionalization and neofunctionalization of the B-class MADS-box genes in Physalis floridana. Planta 241: 387-402.
Gong PC, Quan H, He CY* .2014. Targeting MAGO proteins with a peptide aptamer reinforces their essential roles in multiple rice developmental pathways. Plant J. 80: 905-914.
Wang L, He LL, Li J, Zhao J, Li ZC, He CY*. 2014. Regulatory change at Physalis Organ Size 1 locus correlates to natural variation in tomatillo reproductive organ size. Nat. Commun. 5: 4271.
Gong PC, He CY*. 2014. Uncovering divergence of rice EJC core heterodimer gene duplication reveals their essential role in growth, development and reproduction. Plant Physiol. 165(3): 1047-1061.
Zhao M, He LL, Gu YZ, Wang Y, Chen QS, He CY*. 2014. Genome-wide analyses of a plant-specific LIM-domain gene family implicate its evolutionary roles in plant diversification. Genome Biol. Evol. 6 (4): 1000-1012.
Zhang JS, Li ZC, Zhao J, Zhang SH, Quan H, Zhao M, He CY*. 2014. Deciphering the Physalis floridana double-layered-lantern1 mutant provides insights into functional divergence of the GLOBOSA duplicates within the Solanaceae. Plant Physiol. 164 (2): 748-764.
Zhang JS, Zhao J, Zhang SH, He CY* .2014. Efficient gene silencing mediated by tobacco rattle virus in an emerging model plant Physalis. PLoS ONE 9(1): e85534
Gong PC, Zhao M, He CY*. 2014. Slow co-evolution of the MAGO and Y14 protein families is required for the maintenance of their obligate heterodimerization mode. PLoS ONE 9(1): e84842.
Zhao J, Tian Y, Zhang JS, Zhao M, Gong PC, Riss S, Saedler R, He CY*. 2013. The euAP1 protein MPF3 represses MPF2 to specify floral calyx identity and displays crucial roles in ‘Chinese lantern’ development in Physalis. Plant Cell 25(6): 2002-2021.
He LL, Zhao M, Wang Y, Gai JY, He CY*. 2013. Phylogeny, structural evolution and functional diversification of the plant PHOSPHATE1 gene family: a focus on Glycine max. BMC Evol. Biol. 13: 103.
Zhou H, Cheng F-Y*, Wang R, Zhong Y, He CY*. 2013. Transcriptome comparison reveals key candidate genes responsible for the unusual reblooming trait in tree peonies. PLoS ONE 8(11): e79996.
Wang L, Li ZC, He CY*. 2012. Transcriptome-wide mining of the differentially expressed transcripts for natural variation of floral organ size in Physalis philadelphica. J. Exp. Bot. 63(18): 6457-6465.
Zhang JS, Khan MR, Tian Y, Li ZC, Simone R, He CY*. 2012. Divergences of MPF2-like MADS-domain proteins have an association with the evolution of the inflated calyx syndrome within Solanaceae. Planta 236 (4): 1247-1260.
Khan MR*, Hu J, He CY*. 2012. Plant hormones including ethylene are recruited in calyx inflation in Solanaceous plants. J. Plant Physiol. 169(10): 940-948.
He LL, Zhao J, Zhao M, He CY*. 2011. Current development and application of soybean genomics. Front. Biol. 6(4): 337-348.
Zhang JS, Tian Y, Wang L, He CY*. 2010. Functional evolutionary developmental biology (evo-devo) of morphological novelties in plants. J. Syst. Evol. 48 (2): 94-101.
Wunder J, He CY, Hu J, Li M, Varotto C, Saedler H*. 2010. Evolution of plant biodiversity. Acta Hort. 849: 21-32.
He CY*, Tian Y, Saedler R, Efremova N, Riss S, Khan MR, Yephremov A, Saedler H. 2010. The MADS-domain protein MPF1 of Physalis floridana controls plant architecture, seed development and flowering time. Planta 231: 767-777.
Khan MR, Hu J, Riss S, He CY, Saedler H*. 2009. MPF2-like-A MADS-box genes control the inflated calyx syndrome in Withania (Solanaceae): roles of Darwinian’s selection. Mol. Biol. Evol. 26(11): 2463-2473.
He CY*, Sommer H, Grosardt B, Huijser P, Saedler H*. 2007. PFMAGO, a MAGO NASHI-like factor, interacts with the MADS-box protein MPF2 from Physalis floridana. Mol. Biol. Evol. 24(5): 1229-1241.
He CY, Saedler H*. 2007. Hormonal control of the inflated calyx syndrome, a morphological novelty, in Physalis. Plant J. 49(5): 935-946.
He CY*, Saedler H. 2007. Molecular evolution of a morphological novelty in Solanaceae, the Inflated-Calyx-Syndrome (ICS) in Physalis. Acta Hort. 745: 171-182.
He CY, Saedler H*. 2005. Heterotopic expression of MPF2 is the key to the evolution of the Chinese lantern of Physalis, a morphological novelty in Solanaceae. Proc. Natl. Acad. Sci. USA 102 (16): 5779-5784.
He CY, Münster T, Saedler H*. 2004. On the origin of floral morphological novelties. FEBS Lett. 567: 147-151.
Wang BJ, Wang YJ, Wang Q, Luo GZ, Zhang ZG, He CY, He SJ, Zhang JS, Gai JY, Chen SY*. 2004. Characterization of an NBS-LRR resistance gene homologue from soybean. J. Plant Physiol. 161(7): 815-822.
Zhang WK, Wang YJ, Luo GZ, Zhang JS, He CY, Wu XL, Gai JY, Chen SY*. 2004. QTL mapping of ten agronomic traits on the soybean (Glycine max L. Merr.) genetic map and their association with EST markers. Theor. Appl. Genet. 108: 1131-1139.
Wang BJ, Zhang ZG, Li XG, Wang YJ, He CY, Zhang JS, Chen SY*. 2003. Cloning and analysis of a disease resistance gene homolog from soybean. Act. Bot. Sin. 45(7): 864-870.
He CY, Tian AG, Zhang JS, Zhang ZY, Gai JY, Chen SY*. 2003. Isolation and characterization of a full-length resistance gene homolog from soybean. Theor. Appl. Genet. 106: 786-793.
He CY, Zhang JS, Chen SY*. 2002. A soybean gene encoding a proline-rich protein is regulated by salicylic acid, an endogenous circadian rhythm and by various stresses. Theor. Appl. Genet. 104: 1125-1131.
He CY, Wang WQ, Dongfang Y, Zhang JS, Chen SY*. 2002. Transcritption regulation of soybean ribulose-1, 5-bisphosphate carboxylase small subunit gene by external factors. Chinese Sci. Bulletin 47(1): 37-43.
He CY, Wu XL, Zhang JS, Gai JY, Chen SY*. 2001. Isolation and characterization of a mitochondrial atp6 gene from soybean [Glycine max (L) Merr]. Act. Bot. Sin. 43(1): 51-58.
He CY, Wu XL, Zhang JS, Dongfang Y, Du BX, Zhang ZY, Chen SY*. 2001. Isolation and characterization of a new defense gene from soybean. Sci. in China (C) 44(4): 409-420.
He CY, Zhang ZY, Chen SY*. 2001. Isolation and characterization of soybean NBS analogs. Chinese Sci. Bulletin 46(23): 1984-1988. [2] 
參考資料
  • 1.    賀超英  .中國科學院植物研究所[引用日期2015-03-26]
  • 2.    賀超英  .中國科學院植物研究所[引用日期2022-04-16]