複製鏈接
請複製以下鏈接發送給好友

軟件生存週期

鎖定
軟件生存週期(SDLC,軟件生命週期)是軟件的產生直到報廢的生命週期,週期內有問題定義、可行性分析、總體描述、系統設計編碼、調試和測試、驗收與運行、維護升級到廢棄等階段,這種按時間分程的思想方法是軟件工程中的一種思想原則,即按部就班、逐步推進,每個階段都要有定義、工作、審查、形成文檔以供交流或備查,以提高軟件的質量。但隨着新的面向對象的設計方法和技術的成熟,軟件生命週期設計方法的指導意義正在逐步減少。
中文名
軟件生存週期
外文名
Systems Development Life Cycle
別    名
軟件生命週期或系統開發生命週期
思想方法
軟件工程中的一種思想原則
用    途
確定軟件的開發目標及其可行性
概    念
軟件的產生直到報廢的生命週期

軟件生存週期概況

軟件生存週期簡介

軟件生存週期 軟件生存週期
軟件生存週期(software life cycle)又稱為軟件生命期,生存期。是指從形成開發軟件概念起,所開發的軟件使用以後,直到失去使用價值消亡為止的整個過程。
一般來説,整個生存週期包括計劃(定義)、開發、運行(維護)三個時期,每一個時期又劃分為若干階段。每個階段有明確的任務,這樣使規模大、結構複雜和管理複雜的軟件開發變得容易控制和管理。

軟件生存週期週期模型

描述軟件開發過程中各種活動如何執行的模型。是軟件工程過程的簡化的抽象描述。

軟件生存週期生命週期階段

軟件生命期一般包括以下各階段:
軟件生存週期 軟件生存週期
·軟件計劃與可行性研究(問題定義、可行性研究)
軟件生存週期 軟件生存週期
·運行與維護

軟件生存週期生存週期劃分

各階段的任務彼此間儘可能相對獨立,同一個階段各項任務的性質儘可能相同,從而降低每個階段任務的複雜性,簡化不同階段之間的聯繫,有利於軟件開發過程的組織管理。

軟件生存週期生存週期基線

功能基線(functional baseline)
軟件生命週期 軟件生命週期
功能基線是指在系統分析與軟件定義階段結束時,經過正式評審和批准的系統設計規格説明書中對待開發系統的規格説明;或是指經過項目委託單位和項目承辦單位雙方簽字同意的協議書或合同中所規定的對待開發軟件系統的規格説明;或是由下級申請經上級同意或直接由上級下達的項目任務書中所規定的對待開發軟件系統的規格説明。功能基線是最初批准的功能配置標識。
指派基線(allocated baseline)
指派基線是指在軟件需求分析階段結束時,經過正式評審和批准的軟件需求的規格説明。指派基線是最初批准的指派配置標識。
產品基線(product baseline)
產品基線是指在軟件組裝與系統測試階段結束時,經過正式評審的批准的有關所開發的軟件產品的全部配置項的規格説明。產品基線是最初批准的產品配置標識。

軟件生存週期SDLC的六個階段

軟件生存週期定義及規劃

此階段是軟件開發方與需求方共同討論,主要確定軟件的開發目標及其可行性。

軟件生存週期需求分析

軟件生存週期 軟件生存週期
在確定軟件開發可行的情況下,對軟件需要實現的各個功能進行詳細分析。需求分析階段是一個很重要的階段,這一階段做得好,將為整個軟件開發項目的成功打下良好的基礎。"唯一不變的是變化本身。",同樣需求也是在整個軟件開發過程中不斷變化和深入的,因此我們必須制定需求變更計劃來應付這種變化,以保護整個項目的順利進行。

軟件生存週期軟件設計

此階段主要根據需求分析的結果,對整個軟件系統進行設計,如系統框架設計,數據庫設計等等。軟件設計一般分為總體設計詳細設計。好的軟件設計將為軟件程序編寫打下良好的基礎。

軟件生存週期程序編碼

軟件生存週期 軟件生存週期
此階段是將軟件設計的結果轉換成計算機可運行的程序代碼。在程序編碼中必須要制定統一,符合標準的編寫規範。以保證程序的可讀性,易維護性,提高程序的運行效率。

軟件生存週期軟件測試

軟件設計完成後要經過嚴密的測試,以發現軟件在整個設計過程中存在的問題並加以糾正。整個測試過程單元測試組裝測試以及系統測試三個階段進行。測試的方法主要有白盒測試黑盒測試兩種。在測試過程中需要建立詳細的測試計劃並嚴格按照測試計劃進行測試,以減少測試的隨意性。

軟件生存週期運行維護

軟件生存週期 軟件生存週期
軟件維護是軟件生命週期中持續時間最長的階段。在軟件開發完成並投入使用後,由於多方面的原因,軟件不能繼續適應用户的要求。要延續軟件的使用壽命,就必須對軟件進行維護。軟件的維護包括糾錯性維護和改進性維護兩個方面。

軟件生存週期週期模型

任何軟件都是從最模糊的概念開始的:為某個公司設計辦公的流程處理;設計一種商務信函打印系統並投放市場。這個概念是不清晰的,但卻是最高層的業務需求的原型。這個概念都會伴隨着一個目的,例如在一個"銀行押匯系統" 的目的是提高工作的效率。這個目的將會成為系統的核心思想,系統成敗的評判標準。99年政府部門上了大量的OA系統,學過一點Lotus Notes的人都發了財(IBM更不用説了),但是更普遍的情況是,許多的政府部門原有的處理模式並沒有變化,反而又加上了自動化處理的一套流程。提高工作效率的初衷卻導致了完全不同的結果。這樣的軟件究竟是不是成功的呢?
從概念提出的那一刻開始,軟件產品就進入了軟件生命週期。在經歷需求、分析、設計、實現、部署後,軟件將被使用並進入維護階段,直到最後由於缺少維護費用而逐漸消亡。這樣的一個過程,稱為"生命週期模型"(Life Cycle Model)。
典型的幾種生命週期模型包括瀑布模型快速原型模型迭代模型瀑布模型(Waterfall Model)首先由Royce提出。該模型由於酷似瀑布聞名。在該模型中,首先確定需求,並接受客户和SQA小組的驗證。然後擬定規格説明,同樣通過驗證後,進入計劃階段…可以看出,瀑布模型中至關重要的一點是隻有當一個階段的文檔已經編制好並獲得SQA小組的認可才可以進入下一個階段。這樣,瀑布模型通過強制性的要求提供規約文檔來確保每個階段都能很好的完成任務。但是實際上往往難以辦到,因為整個的模型幾乎都是以文檔驅動的,這對於非專業的用户來説是難以閲讀和理解的。想象一下,你去買衣服的時候,售貨員給你出示的是一本厚厚的服裝規格説明,你會有什麼樣的感觸。雖然瀑布模型有很多很好的思想可以借鑑,但是在過程能力上有天生的缺陷。
迭代式模型 迭代式模型
迭代式模型是RUP推薦的週期模型,也是我們在這個系列文章討論的基礎。在RUP中,迭代被定義為:迭代包括產生產品發佈(穩定、可執行的產品版本)的全部開發活動和要使用該發佈必需的所有其他外圍元素。所以,在某種程度上,開發迭代是一次完整地經過所有工作流程的過程:(至少包括)需求工作流程、分析設計工作流程、實施工作流程和測試工作流程。實質上,它似小型的瀑布式項目。RUP認為,所有的階段(需求及其它)都可以細分為迭代。每一次的迭代都會產生一個可以發佈的產品,這個產品是最終產品的一個子集。迭代的思想如上圖所示。
迭代和瀑布的最大的差別就在於風險的暴露時間上。"任何項目都會涉及到一定的風險。如果能在生命週期中儘早確保避免了風險,那麼您的計劃自然會更趨精確。有許多風險直到已準備集成系統時才被發現。不管開發團隊經驗如何,都絕不可能預知所有的風險。"(RUP)二者的區別如下圖所示:
軟件生存週期 軟件生存週期
由於瀑布模型的特點(文檔是主體),很多的問題在最後才會暴露出來,為了解決這些問題的風險是巨大的。"在迭代式生命週期中,您需要根據主要風險列表選擇要在迭代中開發的新的增量內容。每次迭代完成時都會生成一個經過測試的可執行文件,這樣就可以核實是否已經降低了目標風險。"(RUP)
快速原型(Rapid Prototype)模型是我喜歡採用的另一種模型。快速原型模型在功能上等價於產品的一個子集。注意,這裏説的是功能上。瀑布模型的缺點就在於不夠直觀,快速原型法就解決了這個問題。一般來説,根據客户的需要在很短的時間內解決用户最迫切需要,完成一個可以演示的產品。這個產品只是實現部分的功能(最重要的)。它最重要的目的是為了確定用户的真正需求。在我的經驗中,這種方法非常的有效,原先對計算機沒有絲毫概念的用户在你的原型面前往往口若懸河,有些觀點讓你都覺得非常的吃驚。在得到用户的需求之後,原型將被拋棄。因為原型開發的速度很快,設計方面是幾乎沒有考慮的,如果保留原型的話,在隨後的開發中會為此付出極大的代價。至於保留原型方面,也是有一種叫做增量模型是這麼做的,但這種模型並不為大家所接受,不在我們的討論之內。
上述的模型中都有自己獨特的思想,其實軟件組織中很少説標準的採用那一種模型的。模型和實用還是有很大的區別的。
軟件生命週期模型的發展實際上是體現了軟件工程理論的發展。在最早的時候,軟件的生命週期處於無序、混亂的情況。一些人為了能夠控制軟件的開發過程,就把軟件開發嚴格的區分為多個不同的階段,並在階段間加上嚴格的審查。這就是瀑布模型產生的起因。瀑布模型體現了人們對軟件過程的一個希望:嚴格控制、確保質量。可惜的是,現實往往是殘酷的。瀑布模型根本達不到這個過高的要求,因為軟件的過程往往難於預測。反而導致了其它的負面影響,例如大量的文檔、繁瑣的審批。因此人們就開始嘗試着用其它的方法來改進或替代瀑布方法。例如把過程細分來增加過程的可預測性。