複製鏈接
請複製以下鏈接發送給好友

汪琦

(冶金專家)

鎖定
汪琦,男,1960年6月1日出生,1982年畢業於鞍山鋼鐵學院,獲得學士學位;1985年畢業於鞍山鋼鐵學院,獲得碩士學位;1998年畢業於東北大學,獲得博士學位。1985年參加工作。現任國務院學科評議組成員、九三遼科大總支主委、遼寧科技大學冶金工程學科教授(二級)、博士研究生導師、化學冶金工程遼寧省重點實驗室主任。 [1-2] 
中文名
汪琦
國    籍
中國
出生日期
1960年6月1日
畢業院校
鞍山鋼鐵學院

汪琦研究方向

(2) 高爐、非高爐鍊鐵理論與技術
(3) 冶金用燃料性質及其評價方法
(4) 固體廢棄物處理技術

汪琦科研項目

(1)“鐵氧化物/碳混合物非等温還原的耦合氣-固反應動力學解析”,國家自然科學基金
(2)“利用菱鎂石尾礦和鐵精礦合成高爐熱風爐用鎂鐵系蓄熱材料反應機理研究”,國家自然科學基金
(3)現代大型高爐用低成本冶金焦炭新技術開發研究,鞍鋼。
(4)固體反應過程中雙相界面層形成的物理化學(51634004), 國家自然科學基金重點項目。 [3] 

汪琦專著

鐵礦含碳球團技術,(ISBN 7-5024-3624-3)冶金工業出版社.國家自然科學基金成果專著出版基金.
汪琦教授

汪琦論文

21 New insight into absorption characteristics of CO2 on the surface of calcite, dolomite, and magnesite, Applied Surface Science, 540 (2021) 148320. [4] 
20 In Situ Observation of the Precipitation, Aggregation, and Dissolution Behaviors of TiN Inclusion on the Surface of Liquid GCr15 Bearing Steel, Metallurgical and Materials Transactions B, (2018) volume 49, pages3137–3150. [5] 
19 Precipitation Behaviors of TiN Inclusion in GCr15 Bearing Steel Billet, Metallurgical and Materials Transactions B, (2018) volume 49, pages1149–1164. [6] 
18 Evidence of Multi-step Nucleation Leading to Various Crystallization Pathways from an Fe-O-Al Melt, Scientific Reports, (2015) 5082-4. [7] 
17 Nanostructured tungsten trioxide prepared at various growth temperatures for sensing applications, Journal of Alloys and Compounds, (2020) 825. [8] 
16 Structural evolution of calcia during calcium deoxidation in Fe–O–Ca melt, Physical Chemistry Chemical Physics, (2019),21, 13847-13855. [9] 
15 Discriminable Sensing Response Behavior to Homogeneous Gases Based on n-ZnO/p-NiO Composites, Nanomaterials, 2020, 10(4). [10] 
14 Roles of MgO and Al2O3 on the Viscous and Structural Behavior of Blast Furnace Primary Slag, Part 1: C/S = 1.3 Containing TiO2, Metals, (2019) 9-8. [11] 
13 Influences of Al2O3 and TiO2Content on Viscosity and Structure of CaO–8%MgO–Al2O3–SiO2–TiO2–5%FeO Blast Furnace Primary Slag, Metals, (2019) 9-7. [12] 
12 Effect of Mineral Elements Migration on Softening–melting Properties of Ti–bearing High Basicity Sinter, ISIJ International, (2019) 59-2. [13] 
11 The effects of MgO and Al2O3 behaviours on softening–melting properties of high basicity sinter, Ironmaking & Steelmaking, (2018) 45-8. [14] 
10 A highly sensitivity and selectivity Pt-SnO2 nanoparticles for sensing applications at extremely low level hydrogen gas detection, Journal of Alloys and Compounds, (2019) 805. [15] 
9 Relevance between Various Phenomena during Coking Coal Carbonization. Part 1: A New Testing Method Developed on a Sapozhnikov Plastometer, Energy & Fuels, 32 (2018) 7438-43. [16] 
8 A new testing and evaluating method of cokes with greatly varied CRI and CSR, Fuel, (2016) 182. [17] 
7 Relevance between various phenomena during coking coal carbonization. Part 2: Phenomenon occurring in the plastic layer formed during carbonization of a coking coal, Fuel, (2019) 253. [18] 
6 Coke solution-loss degradation model with non-equimolar diffusion and changing local pore structure, Fuel, (2020) 116694. [19] 
5 Mass transfer coefficient and effective internal diffusion coefficient for coke solution loss reaction with non-equimolar diffusion, Fuel, (2020) 118225. [20] 
4 Effects of Stefan Flow on Metallurgical Coke Gasification with CO2, Energy & Fuels, 34 (2020) 2936-2944.
3 CO2 capture and separation on charge−modulated calcite, Applied Surface Science, (2020) 147265. [21] 
2 Evolution of calcite surface reconstruction and interface adsorption of calcite-CO2 with temperature, Materials Research Express, 6 (2019) 025035. [22] 
1 Adsorption Kinetics of CO2 on a Reconstructed Calcite Surface: An Experiment-Simulation Collaborative Method, Energy & Fuels, 33 (2019) 8946-8953. [23] 
參考資料
展開全部 收起