複製鏈接
請複製以下鏈接發送給好友

朱旺

(湘潭大學材料科學與工程學院教授)

鎖定
朱旺,男,中共黨員,1988 年2月生,湖南婁底雙峯人,工學博士,湘潭大學材料科學與工程學院教授,博士生導師。
中文名
朱旺
國    籍
中國
出生地
湖南省婁底市雙峯縣
出生日期
1988年2月
畢業院校
湖南科技大學
湘潭大學
學位/學歷
博士
職    業
教師
專業方向
超高温塗層的製備及其抗燒蝕性能研究

朱旺人物經歷

朱旺教育經歷

2009/09-2014/12,湘潭大學材料科學與工程學院,工學博士(碩博連讀)
2005/09-2009/06,湖南科技大學物理學院,理學學士

朱旺研究工作經歷

2014/12-2017/12,湘潭大學材料科學與工程學院,講師
2018/01-2021/12,湘潭大學材料科學與工程學院,副教授
2022/01-至今,湘潭大學材料科學與工程學院,教授(破格)
2019/01-至今,湘潭大學材料科學與工程學院,博士生導師(破格)

朱旺研究方向

超高温塗層的製備及其抗燒蝕性能研究;
熱障塗層高温力學性能表徵;
熱障塗層服役模擬考核與實時檢測;
熱障塗層的失效機理與可靠性評價

朱旺個人簡介

朱旺,男,1988 年生,博士,教授(破格),博士生導師(破格)。湖南省首屆荷尖人才,湖南省優秀青年基金獲得者,湖南省優秀博士學位論文獲得者,韶峯學者。現為國防科技重點實驗室副主任,湖南省力學學會理事。
長期致力於高温熱防護塗層高温力學性能表徵服役環境模擬與失效實時檢測破壞機理和可靠性評價研究,成果應用於航發系統11個單位及其10餘個型號。主持JWGF重點項目子課題、ZFB裝備預先研究領域基金(快速扶持項目)、國家自然科學基金青年項目、湖南省優秀青年基金、航發企業橫向課題(16項)等項目,同時作為核心成員參與了多項國家自然科學基金重大項目、重點項目等項目的研究。在Springer Nature Singapore出版商出版《Thermal Barrier Coatings: Failure Theory and Evaluation Technology》專著1部(排名第三),在科學出版社出版《熱障塗層破壞理論與評價技術》專著1部(排名第三),以第一/通訊作者在J. Mech. Phys. Solids,Int. J. Plasticity,Corros. Sci.,J. Eur. Ceram. Soc.,J. Am. Ceram. Soc.等期刊發表SCI論文28篇,申請國家發明專利5項(實審),授權國家發明專利6項;制定《航空發動機熱障塗層試驗驗證方法》國軍標1套(排名第三),含11個標準;2020年獲得湖南省自然科學一等獎1項(排名第六),2022年獲得湖南省教學成果獎一等獎1項(排名第五)。擔任Coatings雜誌特刊“Preparation and Failure Mechanism of Thermal Barrier Coatings”客座編輯。

朱旺主講課程

《材料的宏微觀力學性能》(國家精品課程);《材料固體力學》

朱旺獲獎情況

湖南省優秀青年基金獲得者(湖南省優青
湖南省優秀博士學位論文獎
湖南省首屆荷尖人才
亞太材料青年科學家論壇優秀邀請報告獎
北京大學力學全國博士生論壇優秀報告獎
中國有色金屬科技論文獎優秀獎
湖南省自然科學獎一等獎
湖南省教學成果獎一等獎
湖南省優秀研究生導師團隊
麓山杯創新創業大賽決賽二等獎

朱旺科研項目

1. 湖南省荷尖人才項目(編號:2022RC1082),2023/01-2025/12,在研,主持。
2. 湖南自然科學基金優秀青年基金項目,基於特徵頻譜窗口的複雜服役環境下熱障塗層損傷識別與表徵方法(編號:2020JJ3031),2020/01-2022/12,在研,主持。
3. 湖南省教育廳重點項目,1600℃下新型A6Ta2O17熱障塗層高温力學性能原位表徵及失效機理(編號:21A0120),2022/01-2024/12,在研,主持。
4. 國家自然科學基金青年項目,TGO本構關係温度相關性的DIC表徵及機制(編號:11602211),2017/01-2019/12,結題,主持。
5. 湖南省教育廳優秀青年項目,TGO生長過程中應力應變關係的DIC表徵(編號:16B249),2017/01-2019/12,結題,主持。
6. 湖南省自然科學基金青年項目,熱力化多場耦合作用下熱障塗層界面氧化的失效分析(編號:2017JJ3307),2017/01-2019/12,結題,主持。

朱旺主要代表性論文

[1] Z.Y. Tan, X. Wu, W. Zhu*, J.W. Guo, W. Wang, Z.S. Ma. Ultra-high hardness induced by W precipitation within Ta-Hf-W-C ultra-high temperature ceramic coatings. Journal of the European Ceramic Society, 2022, 42: 6288-6294.
[2] S. Liu, X.P. Hu, Q. Liu, J.W. Guo, J.Y. Wu, W. Zhu*. Effect of HfO2 content on CMAS corrosion resistance of a promising Hf6Ta2O17 ceramic for thermal barrier coatings. Corrosion Science, 2022, 208: 110712-110721.
[3] Z.Y. Tan, X. Wu, J.W. Guo, W. Zhu*. Toughness mechanism and plastic insensitivity of submicron second phase Ta in a novel Ta-Hf6Ta2O17 composite ceramic. Ceramics International, 2022 (In press).
[4] Q. Liu, X.P. Hu, W. Zhu*, G.L. Liu, J.W. Guo, J. Bin. Thermal shock performance and failure behavior of Zr6Ta2O17-8YSZ double-ceramic-layer thermal barrier coatings prepared by atmospheric plasma spraying. Ceramics International, 2022, 48: 24402-24410.
[5] Z.P. Zhou, W.Z. Yuan, W. Zhu*, X.P. Hu, Y. Zou, Q. Wu, H.Q. Wei. In situ measurements of the high-temperature mechanical properties of ZrO2-doped YTaO4 ceramic by three-point bending combined with a digital image correlation method. Ceramics International, 2022, 48: 1323-1331.
[6] Y. Zou, L.F. Ge, Z.Y. Li, J.W. Guo, W. Zhu*, Z.S. Ma. Determination of the intrinsic elastic modulus, hardness and fracture strength of thermally growth oxide by nanoindentation and tensile tests. Engineering Failure Analysis, 2022, 131: 105815.
[7] Z.Y. Tan, X. Wu, G. Yang, J.W. Guo, W. Zhu*. Structure, mechanical, and micro-scratch behavior of Ta-Hf-C solid solution coating deposited by non-reactive magnetron sputtering. Materials, 2022, 15: 4489-4500.
[8] Z.H. Xie, Q. Liu, K.I. Lee, W. Zhu*, L.T. Wu, R.T. Wu. The effect of bond coat roughness on the CMAS hot corrosion resistance of EB-PVD thermal barrier coatings. Coatings, 2022, 12: 591-605.
[9] X.P. Hu, G.L. Liu, Q. Liu, W. Zhu*, S. Liu, Z.S. Ma. Failure mechanism of EB-PVD thermal barrier coatings under the synergistic effect of thermal shock and CMAS corrosion. Coatings, 2022, 12: 1290-1301.
[10] Z.Y. Tan, C. Luo, W. Zhu*, L. Yang, Y.C. Zhou, Q. Wu. Reactive plasma spraying of supersaturated tungsten super-hard Ta-Hf-W-C solid solution coating. Journal of the European Ceramic Society, 2021, 41: 6772–6777.
[11] Q. Liu, X.P. Hu, W. Zhu*, J.W. Guo, Z.Y. Tan. Effects of Ta2O5 content on mechanical properties and high-temperature performance of Zr6Ta2O17 thermal barrier coatings. Journal of the American Ceramic Society, 2021, 104: 6533–6544.
[12] K. Yuan, L. Yang, Q. Wang, F. Zhang, W. Zhu*, Y.C. Zhou. Al2O3-TiO2 codoped YSZ thermal barrier coatings resistant to damage by molten calcium-magnesium-alumino-silicate (CMAS) glass. Advanced Engineering Materials, 2021, 2001338.
[13] Y.Q. Xiao, L. Yang, W. Zhu*, Y.C. Zhou, Z.P. Pi, Y.G. Wei. Delamination mechanism of thermal barrier coatings induced by thermal cycling and growth stresses. Engineering Failure Analysis, 2021, 121: 105202.
[14] Z.Y. Tan, W. Zhu*, L. Yang, Y.C. Zhou, Q. Wu, L.J. Gong. Microstructure, mechanical properties and ablation behavior of ultra-high temperatureTa-Hf-C solid solution coating prepared by a step-by-step plasma solid solution method. Surface and Coatings Technology, 2020, 403: 126405.
[15] Z.Y. Tan, Z.H. Yang, W. Zhu*, L. Yang, Y.C. Zhou, X.P. Hu. Mechanical properties and calcium-magnesium-alumino-silicate (CMAS) corrosion behavior of a promising Hf6Ta2O17 ceramic for thermal barrier coatings. Ceramics International, 2020, 46: 25242-25248.
[16] W. Zhu, C.X. Zhang, L. Yang, Y.C. Zhou, Z.Y. Liu. Real-time detection of damage evolution and fracture of EB-PVD thermal barrier coatings under thermal shock: An acoustic emission combined with digital image correlation method. Surface and Coatings Technology, 2020, 399: 126151.
[17] W. Zhu, Q. Wu, L. Yang, Y. C. Zhou. In situ characterization of high temperature elastic modulus and fracture toughness in air plasma sprayed thermal barrier coatings under bending by using digital image correlation. Ceramics International, 2020, 46: 18526–18533.
[18] W. Zhu, Z. Y. Li, L. Yang, Y. C. Zhou, J. F. Wei. Real-time detection of CMAS corrosion failure in APS thermal barrier coatings under thermal shock. Experimental Mechanics, 2020, 60: 775–785.
[19] W. Zhu, H. Y. Chen, L. Yang, Y. C. Zhou, G. N. Xu. Phase field model for diffusion-reaction stress field in the thermal barrier coatings corroded by the molten CMAS. Engineering Failure Analysis, 2020, 111: 104486.
[20] Z.Y. Liu, W. Zhu, L. Yang, Y.C. Zhou. Numerical prediction of thermal insulation performance and stress distribution of thermal barrier coatings coated on a turbine vane. International Journal of Thermal Sciences, 2020, 158: 106552.
[21] W. Zhu, X. N. Cai, L. Yang, J. Xia, Z. P. Pi, Y. C. Zhou. The evolution of pores in thermal barrier coatings under volcanic ash corrosion using X-ray computed tomography. Surface and Coatings Technology, 2019, 357: 372–378.
[22] W. Zhu, Z. B. Zhang, L. Yang, Y. C. Zhou, Y. G. Wei. Spallation of thermal barrier coatings with real thermally grown oxide morphology under thermal stress. Materials & Design, 2018, 146C: 180–193.
[23] W. Zhu, Y. J. Jin, L. Yang, Z. P. Pi, Y. C. Zhou. Fracture mechanism maps for thermal barrier coatings subjected to single foreign object impacting. Wear, 2018, 414-415: 303–309.
[24] W. Zhu, J. W. Wang, L. Yang, Y. C. Zhou, Y. G. Wei, R. T. Wu. Modeling and simulation of the temperature and stress fields in a 3D turbine blade coated with thermal barrier coatings. Surface and Coatings Technology, 2017, 315: 443-453.
[25] W. Zhu, L. Yang, J. W. Guo, Y. C. Zhou, C. Lu. Determination of interfacial adhesion energies of thermal barrier coatings by compression test combined with a cohesive zone finite element model. International Journal of Plasticity, 2015, 64: 76–87.
[26] W. Zhu, Y. C. Zhou, J. W. Guo, L. Yang, C. Lu. Quantitative characterization of the interfacial adhesion of Ni thin films on steel substrates: a compression-induced buckling delamination test.Journal of the Mechanics and Physics of Solids, 2015, 74: 19–37.
[27] W. Zhu, M. Cai, L. Yang, J. W. Guo, Y. C. Zhou, C. Lu. The effect of the morphology of thermally grown oxide on the stress field in a turbine blade with thermal barrier coatings. Surface and Coatings Technology, 2015, 276: 160–167.
[28] W. Zhu, L. Yang, J. W. Guo, Y. C. Zhou, C. Lu. Numerical study on interaction of surface cracking and interfacial delamination in thermal barrier coatings under tension. Applied Surface Science, 2014, 315: 292–298.
[29] G. N. Xu. L. Yang, Y. C. Zhou, Z. P. Pi, W. Zhu. A chemo-thermo-mechanically constitutive theory for thermal barrier coatings under CMAS infiltration and corrosion. Journal of the Mechanics and Physics of Solids, 2019, 133: 103710.
[30] B. B. Yin, F. Zhang, W. Zhu, L. Yang, Y. C. Zhou. Effect of Al2O3 modification on the properties of YSZ: corrosion resistant, wetting and thermal-mechanical properties. Surface and Coatings Technology, 2019, 357: 161-171.
[31] Z. P. Pi, F. Zhang, J. B. Chen, W. Zhu, L. Yang, Y. C. Zhou. Multiphase field theory for ferroelastic domain switching with an application to tetragonal zirconia. Computational Materials Science, 2019, 170: 109165.
[32] L. Yang, W. Zhu, C. F. Li, Y. C. Zhou*, N. G. Wang, Y. G. Wei. Error and modification in thermal barrier coatings measurement using impendence spectroscopy. Ceramics International, 2017, 43: 4976-4983.
[33] L. Yang, J. Yang, J. Xia, W. Zhu, Y. C. Zhou, Y. G. Wei, R. T. Wu. Characterization of the strain in the thermal barrier coatings caused by molten CaO-MgO-Al2O3-SiO2 using a digital image correlation technique. Surface and Coatings Technology, 2017, 322: 1-9.
[34] Q. Shen, L. Yang, Y. C. Zhou, W. G. Wei, W. Zhu. Effects of growth stress in finite-deformation thermally grown oxide on failure mechanism of thermal barrier coatings. Mechanics of Materials, 2017, 114: 228-242.
[35] L. Yang, H. L. Li, Y. C. Zhou, W. Zhu, Y. G. Wei, J. P. Zhang. Erosion failure mechanism of EB-PVD thermal barrier coatings with real morphology. Wear, 2017, 392-393: 99-108.
[36] N. G. Wang, C. F. Li, L. Yang, Y. C. Zhou, W. Zhu, C. Y. Cai. Experimental testing and FEM calculation of impedance spectra of thermal barrier coatings: effect of measuring conditions. Corrosion Science, 2016, 107: 155-171.
[37] W. Z. Tang, L. Yang, W. Zhu, Y. C. Zhou, J. W. Guo, C. Lu. Numerical simulation of temperature distribution and thermal-stress field in a turbine blade with multilayer-structure TBCs by a fluid-solid coupling method. Journal of Materials Science & Technology, 2016, 32: 452-458.
[38] L. Yang, Z. C. Zhong, Y. C. Zhou, W. Zhu, Z. B. Zhang, C. Y. Cai, C. Lu. Acoustic emission assessment of interface cracking in thermal barrier coatings. Acta Mechanica Sinica, 2016, 32: 342-348.
[39] J. W. Guo, L. Yang, Y. C. Zhou, L. M. He, W. Zhu, C. Y. Cai, C. Lu. Reliability assessment on interfacial failure of thermal barrier coatings. Acta Mechanica Sinica, 2016, 32: 912-924.
[40] L. Yang, H. S. Kang, Y. C. Zhou, W. Zhu, C. Y. Cai, C. Lu. Frequency as a key parameter in discriminating the crack modes of thermal barrier coatings: cluster analysis of acoustic emission signals. Surface and Coatings Technology, 2015, 264: 97–104.

朱旺發明專利

[1] 朱旺, 譚振宇, 楊麗, 周益春. 一種強韌化超高緻密度抗超高温燒蝕塗層及其製備方法. 中國發明專利, 授權專利號:ZL 202010740164.3, 2022.
[2] 朱旺, 譚振宇, 楊麗, 周益春. 一種超高温陶瓷塗層及其複合材料、製備方法. 中國發明專利, 授權專利號:ZL 202010740168.1, 2021.
[3] 朱旺, 譚振宇, 楊麗, 周益春. 一種熱障塗層高温沖蝕的檢測方法. 中國發明專利, 授權專利號:ZL 201910219258.3, 2020.
[4] 朱旺, 石黎, 楊麗, 張春興, 周益春. 一種工作葉片熱障塗層服役載荷的等效加載裝置及方法. 中國發明專利, 授權專利號:ZL 201811506720.X, 2020.
[5] 朱旺, 羅毅, 楊麗, 周益春. 一種熱障塗層服役工況模擬試驗用渦輪模型. 中國發明專利, 授權專利號:ZL 201811505725.0, 2020.
[6] 朱旺, 譚振宇, 楊麗, 周益春. 一種金屬碳化合物塗層及其製備方法. 中國發明專利, 授權專利號:ZL 201910093291.6, 2020.
[7] 楊麗, 石黎, 朱旺, 張春興, 周益春. 一種渦輪葉片熱障塗層服役載荷的等效加載裝置及方法. 中國發明專利, 授權專利號:ZL 201811505740.5, 2020.
[8] 楊麗, 羅毅, 朱旺, 周益春. 一種熱障塗層服役工況模擬試驗用渦輪模型. 中國發明專利, 授權專利號:ZL 201811506732.2, 2020.
[9] 楊麗, 劉志遠, 朱旺, 周益春. 一種渦輪葉片熱障塗層的冷卻工況加載設備. 中國發明專利, 授權專利號:ZL 201811505711.9, 2020.
[10] 楊麗, 劉志遠, 周益春, 朱旺. 一種渦輪葉片熱障塗層應用效果的評價方法. 中國發明專利, 授權專利號:ZL 201811173708.1, 2020.
[11] 楊麗, 周益春, 劉志遠, 羅毅, 朱旺. 一種渦輪葉片熱障塗層工況模擬實驗測試系統. 中國發明專利, 授權專利號:ZL 201811505735.4, 2020.
[12] 楊麗, 周益春, 謝志航, 蔡書漢, 朱旺. 一種原位補氧型掃描式電子束氣相沉積(IOC-SEVD)裝置及其方法. 中國發明專利, 授權專利號:ZL 201810008839.8, 2020.
[13] 楊麗, 譚明, 周益春, 周文峯, 朱旺, 李朝陽. 模擬熱障塗層服役環境的火焰噴射裝置及火焰噴射方法. 中國發明專利, 授權專利號:ZL 201810008840.0, 2019.
[14] 楊麗, 朱旺, 湯文章, 周益春. 塗有熱障塗層的器件的工況模擬方法. 中國發明專利, 授權專利號:ZL 201510534531.3, 2018.
[15] 楊麗, 朱旺, 齊莎莎, 周益春. 一種建立含缺陷的材料模型的有限元建模方法. 中國發明專利, 授權專利號:ZL 201510535275.X, 2018.
[16] 楊麗, 肖逸奇, 周益春, 朱旺. 熱障塗層沖蝕率模型及含塗層渦輪葉片沖蝕工況模擬方法. 中國發明專利, 授權專利號:ZL 201610256953.3, 2018.
[17] 楊麗, 尹冰冰, 周益春, 朱旺. 一種熔融CMAS侵蝕熱障塗層潤濕性能的測試裝置及測試方法. 中國發明專利, 授權專利號:ZL 201510551412.9, 2018.
[18] 楊麗, 李郴飛, 周益春, 朱旺, 蔡燦英. 復阻抗譜的檢測裝置及其方法. 中國發明專利, 授權專利號:ZL 201510641169.X, 2017.
[19] 楊麗, 李曉軍, 周益春, 朱旺, 蔡燦英. 含有多條冷卻通道的渦輪葉片熱障塗層的有限元建模方法. 中國發明專利, 授權專利號:ZL 201410147552.5, 2017.
[20] 楊麗, 李曉軍, 周益春, 朱旺, 蔡燦英. 一種渦輪葉片熱障塗層的有限元模型的網格劃分方法. 中國發明專利, 授權專利號:ZL 201410147512.0, 2017.
[21] 楊麗, 郭進偉, 朱旺, 周益春, 蔡燦英. 一種基於JC算法的熱障塗層界面氧化失效可靠性評估方法. 中國發明專利, 授權專利號:ZL 201310142934.4, 2016.
[22] 周益春, 朱旺, 郭進偉, 楊麗. 定量表徵薄膜材料界面結合性能的屈曲測試方法及裝置. 中國發明專利, 授權專利號:ZL 201210528158.7, 2014.