複製鏈接
請複製以下鏈接發送給好友

塑性變形的力學原理

鎖定
從認定塑性變形體為均質連續體出發,依據宏觀的實驗結果,研究變形體內的應力、應變以及它們和變形温度、速度等條件之間的關係
中文名
塑性變形的力學原理
外文名
element of mechanics of plasticity
出    發
塑性變形體為均質連續體
依    據
宏觀的實驗結果
研    究
變形體內的應力、應變
原理介紹
塑性變形的力學原理 塑性變形的力學原理
材料試驗中,常用圓棒受拉,短柱受壓,薄壁管受扭轉,以測定負載和變形的關係;然後分別算出單位面積上的負載(稱為應力,常用表示)和單位長度的變形(稱為應變,常用ε表示)。材料的和ε間的對應關係稱為應力-應變曲線(-ε曲線)。最常用的試驗是試樣受拉時,由原始長度增加到,常稱比值為工程應變或應變,而稱自然對數值ln (/)為對數應變或真應變。若在外力的作用下,受拉試樣由原始截面積減小到每一瞬間的值,則稱比值/為習慣應力,/為真應力。常見的延性金屬的應力-應變曲線,按有無明顯的屈服點,分為兩類(見金屬力學性能的表徵)。
對於小變形量,用工程應力-應變曲線即可;而對於大變形量,需用真應力-應變曲線。在一次受拉試驗中,我們可以得到材料的特徵性的-ε曲線,此外,還可以得到材料的屈服應力、斷裂應力、截面收縮率(%)、延伸率即伸長率(%)和彈性模量等特性指標。
塑性變形的力學原理 塑性變形的力學原理
常用作為材料塑性變形時的抗力,%和%為其承受塑性變形的能力(塑性指標)。但對塑性加工而言,由於變形量大、變形條件複雜,所以上述指標值不能直接應用,而只能表示某個可以單獨測定的條件(如温度、變形速率等)對變形抗力和塑性指標的影響。因此我們常用來表示材料在簡單應力狀態條件下的變形抗力,用表示在某個複雜條件下的變形抗力;在高變形速率的實驗中,由於和難於分別測定,所以有時也用的變化來代表變形抗力的變化。
塑性加工總是在複雜的應力狀態條件下實現的。早在1911年馮·卡門(T.von Karman)就用實驗證明在高流體靜壓力下,通常認為是“脆性的”花崗岩可以有相當大的塑性變形。但是從一個簡單的試驗結果出發來定量地描述各種加工條件下的塑性指標,是很困難的;因而必須用接近於加工條件的方式進行實測,測得的數值稱為塑性加工性指標(見金屬塑性加工)。我們用塑性變形條件來計算應力狀態條件對於變形抗力的影響。
有兩個論題:如何用最簡化的數學語言敍述複雜應力狀態?在這樣的背景下如何敍述進入塑性變形狀態的條件?
塑性變形的力學原理 塑性變形的力學原理
應力狀態條件 取均質連續體內一點(或不考慮力分佈的單元體)作受力分析的對象,則可證明存在着一組唯一的三維直角座標系,不論外部的作用力如何分佈,在此係內沿座標面在單元體上的切應力為零。此座標系稱為主座標系,垂直於座標面的正應力稱為主應力,常用、、表示。這樣,任何複雜的受力情況總可用圖1所示的情況之一來表示。
塑性變形的力學原理塑性變形條件<設主應力>,而且材料在簡單拉或壓之下發生塑性變形的應力為,按特雷斯卡(H.Tresca)發生塑性變形的條件為(-)/2=/2;而按米澤斯(R.von Mises)則為(-)+(-)+(-)=2娿。這些條件提供了分析實際塑性變形時的變形方式、工具形狀和摩擦等外部影響變形抗力的理論基礎。同時可認為變形材料的化學成分、組織、變形的温度和速率主要是通過影響而影響變形抗力的。
塑性變形的力學原理 塑性變形的力學原理
洛德(W.Lode)於1926年,泰勒(G.I.Taylor)和奎尼(H.Quinney)於1931年,萊塞爾斯(J.M.Lessells)和麥格雷戈(C.W.MacGregor)於1940年以及戴維斯(E.A.Davis)於1945年分別用不同的方法通過實驗對上述兩種條件進行了驗證,證明米澤斯條件更符合實際;同時,二者相差不超過15.5%。由於特雷斯卡條件在數學上比較簡單,所以也常被使用。
影響變形抗力的因素主要有應變硬化、應變速率和變形温度等。
應變硬化 隨着塑性變形量的增加,繼續變形所需應力增加,這種現象叫做應變硬化或加工硬化,是塑性變形時的重要現象之一。常用變形過程中的每一瞬間的真應力和同一時刻的真應變(ε)的函數關係=(ε),表示應變硬化,有時稱=(ε)為塑性曲線。塑性曲線的形狀與材料種類、變形温度有關。在很多情況下,塑性曲線可以用冪函數=ε近似地表出(圖2)。式中為強度因數,單位為kgf/mm,為應變硬化指數
塑性變形的力學原理若=0則材料為理想塑性體(即沒有應變硬化),=1則材料為完全彈性體;一般材料0<1。下表給出退火狀態下的一些材料,在室温和低變形速率下的K值和值。
塑性變形的力學原理 塑性變形的力學原理
塑性變形的力學原理應變速率(媍) 單位時間內的應變增量,即夊=dε/d,單位為s。夊的通常範圍是:靜載蠕變為10~10s;材料試驗中的靜載試驗為10~10s,一般動載試驗為10~10s,高速動載試驗為10~10s。一般塑性加工時的夊約為10~10s。一般情況下,夊的增加使變形抗力上升,塑性指標下降;當變形温度升高時,變形抗力升高得更快,如圖3所示(由於實驗方法的原因,取最大負荷時的真應力為變形抗力)。
塑性變形的力學原理變形温度 温度變化而不引起材料組織變化時,變形温度升高則變形抗力下降,塑性指標(%)增加。但這種變化在不同温度範圍內的影響程度不同。一般規律是温度越高,則變形温度和速率的變化的影響越大。在熱加工範圍內,夊升高一倍,可使增加10%~20%(圖4)。
塑性變形的力學原理