複製鏈接
請複製以下鏈接發送給好友

劉建軍

(湖南大學物理與微電子科學學院副教授)

鎖定
劉建軍,男,湖南省衡陽縣人,漢族,中共黨員,博士,湖南大學物理與微電子科學學院副教授,博士生導師。 [1] 
中文名
劉建軍
國    籍
中國
民    族
漢族
畢業院校
哈爾濱工業大學
學位/學歷
博士
職    業
教師
專業方向
物理學
任職院校
湖南大學

劉建軍人物經歷

劉建軍教育經歷

2008.09-2013.07:哈爾濱工業大學航天學院光學工程專業,工學博士
2006.09-2008.07:哈爾濱工程大學理學院光學專業,理學碩士
1999.09-2003.07:東北林業大學師範學院(現理學院)物理學專業,理學學士 [1] 

劉建軍工作經歷

2018.01-現在:湖南大學物理與微電子科學學院,副教授
2013.09-2017.12:湖南大學物理與微電子科學學院,助理教授
2016.01-現在:湖南大學物理與微電子科學學院,博士生導師
2015.11-2016.12:紐約州立大學布法羅分校激光、光子學與生物光子學研究所,訪問學者
2003.07-2006.08:大慶石油學院(現東北石油大學)電子科學學院,助教 [1] 

劉建軍學術兼職

Optics Letters、Journal of Physics D: Applied Physics、Journal of Physics: Condensed Matter、Applied Optics、 Journal of the Optical Society of America A、Journal of the Optical Society of America B、Optical Materials、Optics Communications、Optik、Optical Engineering等學術期刊審稿人。 [1] 

劉建軍研究領域

1. 從事電子科學與技術學科的教學工作,主講本科生課程《模擬電子技術》、《光波導原理與器件》及研究生課程《微納光子學原理(學術型)》、《微納光子學器件及應用(專業型)》。
2. 正從事基於光子晶體(含光子準晶)的微納光子學、拓撲光子學、微納光電器件及應用領域的科研工作,主要涉及透鏡、光纖、微腔及光波導器件及應用。
3. 擬開展基於聲子晶體的拓撲聲子學、聲學超表面、經典與量子波動功能器件及應用領域的科研工作,主要涉及平板透鏡的拓撲負折射、零折射、超分辨成像及亞波長聚焦及應用。
4. 在物理學(理學)、電子科學與技術(工學)、集成電路工程(專碩)三個專業招收碩士研究生;在電子科學與技術(工學)專業招收博士研究生;在“物理學”、“電子科學與技術”博士後科研流動站招收博士後科研人員。 [1] 

劉建軍科研項目

1. 國家自然科學基金青年科學基金項目《二維光子準晶透鏡成像的機理研究》(項目編號:61405058),2015.01–2017.12,主持。
2. 湖南省自然科學基金面上項目《二維全電介質光子晶體的三重簡併態及零折射率》(項目編號:2017JJ2048),2017.01–2019.12,主持。 [1] 

劉建軍學術成果

劉建軍主要成果

以第一、通訊作者在Phys. Rev. Applied、Opt. Lett.、Opt. Express、J. Phys. D: Appl. Phys.、Appl. Phys. Express、IEEE Photonic. Tech. L.、Appl. Opt.、J. Opt. Soc. Am. A、J. Opt. Soc. Am. B、Photonic. Nanostruct. Fund. Appl.、Solid State Commun.、Superlattice. Microst.、Microelectron. Eng.等學術刊物上發表40餘篇SCI論文及2篇EI論文,獲授權6項中國發明專利。 [1] 

劉建軍學術論文

[43] B. Yan, J. Xie, E. Liu, Y. Peng, R. Ge, J. Liu*, and S. Wen, “Topological edge state in two-dimensional Stampfli-triangle photonic crystals,” Physical Review Applied, 12, 044004 (2019).
[42] C. Li, B. Yan, and J. Liu*, “Refractive index sensing characteristics in a D-shaped photonic quasi-crystal fiber sensor based on surface plasmon resonance,” Journal of the Optical Society of America A, 36(10): 1663–1668 (2019).
[41] A. Shi, R. Ge, and J. Liu*, “Refractive index sensor based on photonic quasi-crystal with concentric ring microcavity,” Superlattices and Microstructures, 133: 106198 (2019).
[40] Y. Cen, J. Xie, and J. Liu*, “Multi-band imaging and focusing of photonic crystal flat lens with scatterer-size gradient,” Chinese Optics Letters, 17(8): 080501 (2019).
[39] E. Liu, W. Tan, B. Yan, J. Xie, R. Ge, and J. Liu*, “Robust transmission of orbital angular momentum mode based on a dual-cladding photonic quasi-crystal fiber,” Journal of Physics D: Applied Physics, 52(32): 325110 (2019).
[38] D. Tang*, L. Chen, and J. Liu, “Visible achromatic super-oscillatory metasurfaces for sub-diffraction focusing,” Optics Express, 27(9): 12308–12316 (2019).
[37] E. Liu, S. Liang, and J. Liu*, “Double-cladding structure dependence of guiding characteristics in six-fold symmetric photonic quasi-crystal fiber,” Superlattices and Microstructures, 130: 61–67 (2019).
[36] Q. Liu, B. Yan, and J. Liu*, “U-shaped photonic quasi-crystal fiber sensor with high sensitivity based on surface plasmon resonance,”Applied Physics Express, 12(5): 052014 (2019).
[35] S. Liang, J. Xie, P. Tang*, and J. Liu*, “Large object distance and super-resolution graded-index photonic crystal flat lens,” Optics Express, 27(7): 9601–9609 (2019).
[34] J. Han, E. Liu, and J. Liu*, “Circular gradient-diameter photonic crystal fiber with large mode area and low bending loss,” Journal of the Optical Society of America A, 36(4): 533–539 (2019).
[33] T. Zhou, W. Tan, B. Yan, E. Liu, and J. Liu*, “Sub-wavelength focusing in the visible wavelength range realized by a one-dimensional ternary photonic crystal plano-concave lens,” Superlattices and Microstructures, 124: 176–184 (2018).
[32] C. Zhang, Z. Jiang, W. Tan, R. Ge, and J. Liu*, “Non-near-field sub-diffraction focusing in the visible wavelength range by a Fibonacci subwavelength circular grating,” Journal of the Optical Society of America A, 35(10): 1701–1704 (2018).
[31] W. Zhang, W. Tan, Q. Yang, T. Zhou, and J. Liu*, “Subwavelength focusing in visible light band by a Fibonacci photonic quasi-crystal plano-concave lens,” Journal of the Optical Society of America B, 35(10): 2364–2367 (2018).
[30] W. Tan, E. Liu, B. Yan, J. Xie, R. Ge, D. Tang, J. Liu*, and S. Wen, “Subwavelength focusing of a cylindrically symmetric plano-concave lens based on a one-dimensional Thue-Morse photonic quasicrystal,”Applied Physics Express, 11(9): 092002 (2018).
[29] R. Ge, J. Xie, B. Yan, E. Liu, W. Tan, and J. Liu*, “Refractive index sensor with high sensitivity based on circular photonic crystal,” Journal of the Optical Society of America A, 35(6): 992–997 (2018).
[28] J. Xie, J. Wang, R. Ge, B. Yan, E. Liu, W. Tan, and J. Liu*, “Multiband super-resolution imaging of graded-index photonic crystal flat lens,” Journal of Physics D: Applied Physics, 51(20): 205103 (2018).
[27] J. Liu* and Z. Fan, “Size limits for focusing of two-dimensional photonic quasicrystal lenses,” IEEE Photonics Technology Letters, 30(11): 1001–1004 (2018).
[26] C. Yue, W. Tan, and J. Liu*, “Photonic band gap properties of one-dimensional Thue-Morse all-dielectric photonic quasicrystal,” Superlattices and Microstructures, 117: 252–259 (2018).
[25] B. Yan, A. Wang, E. Liu, W. Tan, J. Xie, R. Ge, and J. Liu*, “Polarization filtering in the visible wavelength range using surface plasmon resonance and a sunflower-type photonic quasi-crystal fiber,” Journal of Physics D: Applied Physics, 51(15): 155105 (2018).
[24] E. Liu, W. Tan, B. Yan, J. Xie, R. Ge, and J. Liu*, “Broadband ultra-flattened dispersion, ultra-low confinement loss and large effective mode area in an octagonal photonic quasi-crystal fiber,” Journal of the Optical Society of America A, 35(3): 431–436 (2018).
[23] E. Liu, B. Yan, W. Tan, J. Xie, R. Ge, and J. Liu*, “Guiding characteristics of Sunflower-type fiber,” Superlattices and Microstructures, 115: 123–129 (2018).
[22] Z. Wang, K. Su, B. Feng, T. Zhang, W. Huang, W. Cai, W. Xiao, H. Liu, and J. Liu*, “Coupling length variation and multi-wavelength demultiplexing in photonic crystal waveguides,” Chinese Optics Letters, 16(1): 011301 (2018).
[21] Y. -F. Zhao, Z. -M. Wang, Z. -J. Jiang, X. Chen, C. -X. Yue, J. -Z. Wang, and J. -J. Liu*, “Add-drop filter with compound structures of photonic crystal and photonic quasicrystal,” Journal of Infrared and Millimeter Waves, 36(3): 342–348 (2017). (In Chinese)
[20] Z. -J. Jiang and J. -J. Liu*, “Progress in far-field focusing and imaging with super-oscillation,” Acta Physica Sinica, 65(23): 234203 (2016). (In Chinese)
[19] W. Cai, E. Liu, B. Feng, W. Xiao, H. Liu, Z. Wang, S. Wang, T. Liang, J. Liu, and J. Liu*, “Dodecagonal photonic quasi-crystal fiber with high birefringence,” Journal of the Optical Society of America A, 33(10): 2108–2114 (2016).
[18] B. Feng, E. Liu, Z. Wang, W. Cai, H. Liu, S. Wang, T. Liang, W. Xiao, and J. Liu*, “Generation of terahertz hollow beams by a photonic quasi-crystal flat lens,” Applied Physics Express, 9(6): 062003 (2016).
[17] J. Liu*, W. Tan, E. Liu, H. Hu, Z. Fan, T. Zhang, and X. Zhang, “Planar scanning method for detecting refraction characteristics of two-dimensional photonic quasi-crystal wedge-shaped prisms,” Journal of the Optical Society of America A, 33(5): 978–983 (2016).
[16] K. Su, Z. M. Wang, and J. J. Liu*, “Three waveguides directional coupler based on two dimensional square lattice photonic crystal,” Acta Optica Sinica, 36(3): 0323002 (2016). (In Chinese, EI)
[15] H. Liu, W. Xiao, W. Cai, E. Liu, B. Feng, Z. Wang, T. Liang, S. Wang, and J. Liu*,“Photonic quasi-crystal fiber with high birefringence,” Optical Engineering, 55(3): 036101 (2016).
[14] W. Cai, E. Liu, B. Feng, H. Liu, Z. Wang, W. Xiao, T. Liang, S. Wang, J. Liu, and J. Liu*, “Dispersion properties of a photonic quasi-crystal fiber with double cladding air holes,” Optik, 127(10): 4438–4442 (2016).
[13] J. Liu*, E. Liu, and Z. Fan, “Width dependence of two-dimensional photonic quasicrystal flat lens imaging characteristics,” Journal of Modern Optics, 63(7): 692–696 (2016).
[12] J. Liu*, E. Liu, Z. Fan, and X. Zhang, “Dielectric refractive index dependence of the focusing properties of a dielectric-cylinder-type decagonal photonic quasicrystal flat lens and its photon localization,” Applied Physics Express, 8(11): 112003 (2015).
[11] J. J. Liu*, E X. Liu, T. H. Zhang, and Z. G. Fan, “Thickness dependence of two-dimensional photonic quasicrystal lens imaging characteristics,” Solid State Communications, 201: 68–71 (2015).
[10] J. J. Liu*, H. L. Hu, W. Zhang, and Z. G. Fan, “Scatterer radius dependence of focusing properties in two-dimensional photonic quasicrystal flat lens,” Photonics and Nanostructures-Fundamentals Applications, 12(2): 138–143 (2014).
[9] J. Liu* and Z. Fan, “Two-dimensional photonic quasicrystal flat lens with three scatterers,” Optical Engineering, 53(7): 077101(2014).
[8] J. Liu* and Z. Fan, “Comparison of photonic bandgaps of two-dimensional periodic and quasi-periodic photonic crystals with different relative permittivity dielectric,” Optik, 125(21): 6566–6569 (2014).
[7] J. Liu*, Z. Fan, H. Hu, M. Yang, C. Guan, L. Yuan, H. Guo, and X. Zhang, “Wavelength dependence of focusing properties of two-dimensional photonic quasicrystal flat lens,” Optics Letters, 37(10): 1730–1732 (2012).
[6] Z. Fan, J. Liu*, S. Chen, H. Chang, C. Guan, and L. Yuan, “Comparative study of photonic band gaps of germanium-based two-dimensional triangular-lattice and square-lattice and decagonal quasi-periodic photonic crystals,” Microelectronic Engineering, 96: 11–17 (2012).
[5] J. Liu*, Z. Fan, M. Kuang, G. He, C. Guan, and L. Yuan, “Relative permittivity dependence of photonic band gaps for unit cells of the basic structural unit of two-dimensional decagonal photonic quasicrystals,” Optics Communications, 288: 52–55 (2012).
[4] J. Liu*, B. Zuo, S. Chen, H. Hu, H. Xiao, W. Zhang, Z. Fan, H. Guo, and X. Zhang, “Focusing properties of two-dimensional photonic quasicrystal flat lens at different object distances,” Optical Engineering, 51(7): 074005-1–074005-5 (2012).
[3] J. -J. Liu*, Z. -G. Fan, H. -S. Xiao, W. Zhang, C. -Y. Guan, and L. -B. Yuan, “Photonic band gap in Ge-based two-dimensional triangular lattice photonic crystals,” Journal of Infrared and Millimeter Waves, 31(1): 35–41 (2012). (In Chinese)
[2] J. Liu*, Z. Fan, H. Xiao, W. Zhang, C. Guan and L. Yuan, “Photonic bandgaps of different unit cells in the basic structural unit of germanium-based two-dimensional decagonal photonic quasi-crystals,” Applied Optics, 50(24): 4868–4872 (2011).
[1] Z. G. Fan, J. J. Liu*, H. S. Xiao, W. Zhang, C. Y. Guan and L. B. Yuan, “Research progress on growth technique and application of sapphire single crystal,” Journal of the Chinese Ceramic Society, 39(5): 880–891 (2011). (In Chinese, EI) [1] 

劉建軍發明專利

[6] 劉建軍,王梓名,蘇康,劉鴻飛,馮波,蔡偉成,肖威,王爍,梁泰源. 一種高效光子晶體1.31/1.55μm波分複用器:中國,ZL201510825113.X[P]. 2018.03.27.
[5] 劉建軍,劉鴻飛,蔡偉成,肖威,馮波,王梓名,王爍,梁泰源. 一種新型高雙折射光子準晶光纖:中國,ZL201510407666.3[P]. 2018.01.19.
[4] 劉建軍,範志剛,胡海力,張旺,陳剛義,叢海佳. 簡易且高成像質量的二維光子晶體平板透鏡:中國,ZL201210579187.6[P]. 2015.4.22.
[3] 劉建軍,範志剛,左寶君,胡海力. 二維光子準晶楔形稜鏡折射效應的雙直線軌道探測方法:中國,ZL201210254546.0[P]. 2014.12.10.
[2] 範志剛,劉建軍,左寶君,陳守謙,張旺,胡海力. 耐高低温光學窗口支撐部件:中國,ZL201010262269.9[P]. 2012.01.04.
[1] 張旺,劉建軍,範志剛,左寶君,陳守謙,胡海力. 耐高低温中波紅外光學窗口及其製作方法:中國,ZL201010239974.7[P]. 2012.01.18.
3. 研究生畢業去向
[2] 葛睿(2016級碩),上海交通大學 物理學專業 攻讀博士學位(導師:陳玉萍)
[1] 譚威(2015級碩),湖南大學 計算機科學與技術專業 攻讀博士學位(導師:白豔鋒), 學位論文被評為湖南大學2019年優秀碩士學位論文 [1] 

劉建軍獎勵榮譽

1. 湖南大學優秀共產黨員,2018.06
2. 湖南大學2019屆本科畢業實習優秀指導教師,2019.06 [1] 
參考資料