複製鏈接
請複製以下鏈接發送給好友

ocs

(相干光系統)

鎖定
ocs在光通信領域,更大的帶寬、更長的傳輸距離、更高的接收靈敏度,永遠都是科研者的追求目標。
中文名
相干光系統
外文名
ocs

ocs簡介

儘管波分複用(WDM)技術和摻鉺光纖放大器(EDFA)的應用已經極大的提高了光通信系統的帶寬和傳輸距離,但是伴隨着視頻會議等通信技術的應用和互聯網的普及產生的信息爆炸式增長,對作為整個通信系統基礎物理層提出了更高的傳輸性能要求。光通信系統採用強度調製/直接檢測(IM/DD),即發送端調製光載波強度,接收機對光載波進行包絡檢測。儘管這種結構具有簡單、容易集成等優點,但是由於只能採用ASK調製格式,其單路信道帶寬很有限。因此這種傳統光通信技術勢必會被更先進的技術所代替。然而在通信泡沫破滅的今天,新的光通信技術的應用不可避免的會帶來對新型通信設備的需求,面對居高不下的光器件價格,大規模通信設備更換所需要的高額成本,是運營商所不能接受的,因此對設備製造商而言,光纖通信新技術的研發也面臨着很大的風險。如何在現有的設備基礎上提高光通信系統的性能成為了切實的問題。在這樣的背景下,二十多年前曾被寄予厚望的相干光通信技術,再一次被放到了桌面上。 [1]  相干光通信的理論和實驗始於80年代。由於相干光通信系統被公認為具有靈敏度高的優勢,各國在相干光傳輸技術上做了大量研究工作。經過十年的研究,相干光通信進入實用階段。英美日等國相繼進行了一系列相干光通信實驗。AT&T及Bell公司於1989和1990年在賓州的羅靈—克里克地面站與森伯裏樞紐站間先後進行了1.3μm和1.55μm波長的1.7Gbit/sFSK現場無中繼相干傳輸實驗,相距35公里,接收靈敏度達到-41.5dBm。NTT公司於1990年在瀨户內陸海的大分—尹予和吳站之間進行了2.5Gbit/sCPFSK相干傳輸實驗,總長431公里。直到19世紀80年代末,EDFA和WDM技術的發展,使得相干光通信技術的發展緩慢下來。在這段時期,靈敏度和每個通道的信息容量已經不再備受關注。然而,直接檢測的WDM系統經過二十年的發展和廣泛應用後,新的徵兆開始出現,標誌着相干光傳輸技術的應用將再次受到重視。在數字通信方面,擴大C波段放大器的容量,克服光纖色散效應的惡化,以及增加自由空間傳輸的容量和範圍已成為重要的考慮因素。在模擬通信方面,靈敏度和動態範圍成為系統的關鍵參數,而他們都能通過相關光通信技術得到很大改善。
數字傳輸系統中,DPSK和DQPSK的使用已經非常普遍,這就標誌着採用相位敏感的編碼和傳輸技術將成為一種趨勢。而檢測靈敏度和頻譜效率是這種趨勢的關鍵所在。其他影響選擇檢測方案的因素還包括物理層的安全可靠性和網絡的自適應性,兩者都可得益於採用相干光技術的幅度,頻率和偏振編碼。相干模擬傳輸與非相干傳輸相比,也同樣具有很大的優勢,其中在動態範圍方面最為顯著。雖然模擬通信不及數字通信應用廣泛,但是模擬傳輸在很多特殊環境應用上有很重要的作用。
同時,在這短短的二十年中,在光器件方面取得了很大的進步,其中激光器的輸出功率,線寬,穩定性和噪聲,以及光電探測器帶寬,功率容量和共模抑制比都得到了很大的改善,微波電子器件的性能也大幅提高。這些進步使得相干光通信系統商用化變為可能。

ocs工作原理

相干光通信系統在發送端,採用外調制方式將信號調製到光載波上進行傳輸。當信號光傳輸到達接收端時,首先與一本振光信號進行相干耦合,然後由平衡接收機進行探測。相干光通信根據本振光頻率與信號光頻率不等或相等,可分為外差檢測和零差檢測。前者光信號經光電轉換後獲得的是中頻信號,還需二次解調才能被轉換成基帶信號。後者光信號經光電轉換後被直接轉換成基帶信號,不用二次解調,但它要求本振光頻率與信號光頻率嚴格匹配,並且要求本振光與信號光的相位鎖定。

ocs主要優點

(1)靈敏度高,中繼距離長
相干光通信的一個最主要的優點是相干檢測能改善接收機的靈敏度。在相同的條件下,相干接收機比普通接收機提高靈敏度約20dB,可以達到接近散粒噪聲極限的高性能,因此也增加了光信號的無中繼傳輸距離。
(2)選擇性好,通信容量大
相干光通信的另一個主要優點是可以提高接收機的選擇性。在直接探測中,接收波段較大,為抑制噪聲的干擾,探測器前通常需要放置窄帶濾光片,但其頻帶仍然很寬。在相干外差探測中,探測的是信號光和本振光的混頻光,因此只有在中頻頻帶內的噪聲才可以進入系統,而其它噪聲均被帶寬較窄的微波中頻放大器濾除。可見,外差探測有良好的濾波性能,這在星間光通信的應用中會發揮重大作用。此外,由於相干探測優良的波長選擇性,相干接收機可以使頻分複用系統的頻率間隔大大縮小,即密集波分複用(DWDM),取代傳統光復用技術的大頻率間隔,具有以頻分複用實現更高傳輸速率的潛在優勢。
(3)具有多種調製方式
在傳統光通信系統中,只能使用強度調製方式對光進行調製。而在相干光通信中,除了可以對光進行幅度調製外,還可以使用PSK、DPSK、QAM等多種調製格式,利於靈活的工程應用,雖然這樣增加了系統的複雜性,但是相對於傳統光接收機只響應光功率的變化,相干探測可探測出光的振幅、頻率、位相、偏振態攜帶的所有信息,因此相干探測是一種全息探測技術,這是傳統光通信技術不具備的。

ocs研究現狀

相干光通信技術經過近二十年的蟄伏期,在最近幾年越來越受到國際學術界的關注。從05年至今,每年都有大量關於相干光通信技術的文章在國際高水平會議和期刊上發表,內容包括各種新型調製碼型,如正交頻分複用(OFDM)、偏振差分四相移相鍵控(POLMUX-DQPSK),相干光通信關鍵技術的研究,相干光通信中的高速數字信號處理,以及相干光接收機集成化的研究等。此類研究多集中於美國、日本、德國、荷蘭、英國等發達國家,中國也有相關研究文章發表,但數量較少。相干光通信方面的理論研究正在逐年升温,商品化研發也在緩慢進行。06年美國DISCOVERY公司推出了帶寬2.5Gbit/s及10Gbit/s的外差檢測相干光接收機,在帶寬為10Gbit/s誤碼率為10-9時靈敏度可達-30dBm,集成的相干接收機體積比普通電腦機箱小,便於運輸和野外工作。相干光通信的一些關鍵器件及技術也在近幾年得到了很大的發展,如DISCOVERY、德國u2t等公司可提供高速高輸入功率的平衡接收機。
雖然相干光通信系統的潛在優勢使它具備取代傳統光通信系統的可能,但是其實用化研究多集中在特殊環境的應用,如跨洋通信、沙漠通信、星間通信等。傳統光通信系統需要使用大量EDFA、SOA等中繼設備,但是在海底和沙漠等條件非常惡劣的環境中,這些精密設備容易損壞,且修理和更換費用昂貴。相干光通信由於其無中繼距離遠大於傳統光通信系統,可以大量減少中繼設備,降低維護和修理費用。此外,相干光通信一大熱點在於星間光鏈路通信。理論上,與RF載波相比,光載波在衞星通信中具有優勢,包括傳送帶寬大、質量體積功耗小等,通信光極窄的波束寬度也帶來了很好的抗干擾和抗截獲性能,可以極大地提高通信系統的信息安全。因此,相干光通信技術是星間激光通信鏈路技術發展極具潛力的選擇。在1980-1995年間,相干光通信是國際光通信領域的研究熱點。1995年前後,隨着EDFA和WDM的成熟,在光纖通信的商用領域,傳統光通信系統已足以保證通信性能,而在無法使用EDFA做中繼的星間光通信領域,相干光技術則一直被視為滿足功率受限的衞星光通信系統的高靈敏度高帶寬要求的必然選擇,國外對此進行了大量的研究。1997年開始,ESA與德國航天中心合作進行OGS研究項目,研究星地激光通信中光學地面站的1.06μm光外差探測技術。日本國家宇宙開發事業團自1998年以來進行了大量星間相干光通信的研究,對各種相干通信方案進行了星間通信的對比研究。從1999年左右,加州理工JPL實驗室重點研究通過相干光通信技術擴展星間光通信鏈路的信道容量。與此同時,麻省理工林肯實驗室研究了各種相干通信方案在LEO星間平台振動條件下的信噪比、誤碼率等通信性能,並提出了發射功率自適應技術方案,其實驗裝置通信距離3000km,誤碼率1.0E-6.碼速率2Gbit/s。
參考資料