複製鏈接
請複製以下鏈接發送給好友

高壓電動機

鎖定
高壓電動機是指額定電壓在1000V以上的電動機。常使用的是6000V和10000V電壓,由於國外的電網不同,也有3300V和6600V的電壓等級。高壓電動機產生是由於電機功率與電壓和電流的乘積成正比,因此低壓電機功率增大到一定程度(如300KW/380V)電流受到導線的允許承受能力的限制就難以做大,或成本過高。需要通過提高電壓實現大功率輸出。 高壓電機優點是功率大,承受衝擊能力強;缺點是慣性大,啓動和制動都困難。
中文名
高壓電動機
外文名
high-tension motor
額定電壓
1000V以上
電機功率
300KW左右
優    點
功率大,承受衝擊能力強

高壓電動機類型

高壓電機分為:高壓同步電機;高壓異步電機;高壓異步繞線式電動機;高壓鼠籠型電機等。

高壓電動機用途應用

各種電動機中應用最廣的是交流異步電動機(又稱感應電動機)。它使用方便、運行可靠、價格低廉、結構牢固,但功率因數較低,調速也較困難。大容量低轉速的動力機常用同步電動機(見同步電機)。同步電動機不但功率因數高,而且其轉速與負載大小無關,只決定於電網頻率。工作較穩定。在要求寬範圍調速的場合多用直流電動機。但它有換向器,結構複雜,價格昂貴,維護困難,不適於惡劣環境。20世紀70年代以後,隨着電力電子技術的發展,交流電動機的調速技術漸趨成熟,設備價格日益降低,已開始得到應用。電動機在規定工作制式(連續式、短時運行制、斷續週期運行制)下所能承擔而不至引起電機過熱的最大輸出機械功率稱為它的額定功率,使用時需注意銘牌上的規定。電動機運行時需注意使其負載的特性與電機的特性相匹配,避免出現飛車或停轉。電動機能提供的功率範圍很大,從毫瓦級到萬千瓦級。電動機的使用和控制非常方便,具有自起動、加速、制動、反轉、掣住等能力,能滿足各種運行要求;電動機的工作效率較高,又沒有煙塵、氣味,不污染環境,噪聲也較小。由於它的一系列優點,所以在工農業生產、交通運輸、國防、商業及家用電器、醫療電器設備等各方面廣泛應用。一般電動機調速時其輸出功率會隨轉速而變化。

高壓電動機調速

從市場情況看,高壓電機調速技術可分為如下幾種:
液力耦合器
在電機軸和負載軸之間加入葉輪,調節葉輪之間液體(一般為油)的壓力,達到調節負載轉速的目的。這種調速方法實質上是轉差功率消耗型的做法,其主要缺點是隨着轉速下降效率越來越低、需要斷開電機與負載進行安裝、維護工作量大,過一段時間就需要對軸封、軸承等部件進行更換,現場一般較髒,顯得設備檔次低,屬淘汰技術。
早期對調速技術比較感興趣的廠家,或者是因為當初沒有高壓調速技術可以選擇,或者是考慮到成本的因素,對液力耦合器有一些應用。如自來水公司的水泵、電廠的鍋爐給水泵和引風機、鍊鋼廠的除塵風機等。如今,一些老的設備在改造中已經逐漸被高壓變頻替換掉。
高低高型變頻器
變頻器為低壓變頻器,採用輸入降壓變壓器和輸出升壓變壓器實現與高壓電網和電機的接口,這是當時高壓變頻技術未成熟時的一種過渡技術。
由於低壓變頻器電壓低,電流卻不可能無限制的上升,限制了這種變頻器的容量。由於輸出變壓器的存在,使系統的效率降低,佔地面積增大;另外,輸出變壓器在低頻時磁耦合能力減弱,使變頻器在啓動時帶載能力減弱。對電網的諧波大,如果採用12脈衝整流可以減少諧波,但是滿足不了對諧波的嚴格要求;輸出變壓器在升壓的同時,對變頻器產生dv/dt也同等放大,必須加裝濾波器才能適用於普通電機,否則會產生電暈放電、絕緣損壞的情況。如果採用特殊的變頻電機可以避免這種情況,但是就不如採用高低型的變頻器了。
高低型變頻器
變頻器為低壓變頻器,輸入側採用變壓器將高壓變為低壓,將高壓電機換掉,採用特殊的低壓電機,電機的電壓水平多種多樣,沒有統一標準。
這種做法由於採用低壓變頻器,容量也比較小,對電網側的諧波較大,可以採用12脈衝整流減少諧波,但是滿足不了對諧波的嚴格要求。在變頻器出現故障時,電機不能投入到工頻電網運行,在有些不能停機的場合應用會有問題。另外,電機和電纜都要更換,工程量比較大。
串級調速變頻器
將異步電機部分轉子能量回饋至電網,從而改變轉子滑差實現調速,這種調速方式採用可控硅技術,需要使用繞線式異步電動機,而如今工業現場幾乎都採用鼠籠式異步電動機,更換電機非常麻煩。這種調速方式的調速範圍一般在70%-95%左右,調速範圍窄。可控硅技術容易造成對電網的諧波污染;隨着轉速的降低,電網側功率因數也變低,需要採取措施補償。其優點是變頻部分容量較小,比其他高壓交流變頻調速技術成本稍低。
這種調速方式有一種變化形式,即內反饋調速系統,省卻了逆變部分的變壓器,將反饋繞組直接做在定子繞組裏,這種做法要更換電機,其他方面的性能與串級調速接近。

高壓電動機保護裝置

電動機差動保護裝置主要用在大型高壓電動機發電廠,化工廠等地方。如果發生嚴重故障導致電機燒燬,將嚴重影響生產的正常進行,造成巨大的經濟損失,因此必須對其提供完善的保護。現有電動機綜合保護裝置主要針對中小型電動機,為其提供電流速斷,熱過載反時限過流,兩段式定時限負序,零序電流,轉子停滯,啓動時間過長,頻繁啓動等保護功能。而對於2000KW以上特大容量電動機,則無法滿足其內部故障時對保護靈敏度與速動性的要求,因而研製此裝置並配合綜合保護裝置,為高壓電動機提供更可靠更靈敏的保護措施。本裝置設計成三相式縱差,因為2000KW以上特大容量的電動機所在的3KV﹑6KV﹑10KV電網可能是變壓器中性點經高電阻接地的電網,三相式縱差保護不但能作為電動機定子繞組及引出線相間短路主保護,而且可作為單相接地故障的主保護,作用於瞬時跳閘。

高壓電動機納米絕緣材料

自上世紀八、九十年代以來,絕緣材料製造與應用領域關於納米電介質的研究非常活躍,一些性能優異的納米複合材料於上世紀九十年代初在歐美國家相繼問世,如耐電暈聚酰亞胺薄膜、耐電暈漆包線、納米複合交聯聚乙烯高壓電纜等。這些納米複合材料在耐電暈、耐局部放電等方面性能卓越,比傳統材料性能高出了幾十倍甚至上百倍,問世後便很快分別在變頻電機、高壓電纜等領域獲得了應用。
採用納米粒子對主絕緣材料進行增強改性是高壓電機主絕緣的重要發展趨勢之一,有些國外公司關於納米複合主絕緣的研究已完成線棒試驗並已進入樣機試製階段,而我國的相關研究才剛剛起步,且投入的人力物力還很欠缺。我們不應習慣於等到國外新產品問世後再來仿製或引進,這樣是不能趕上國外先進水平的,例如耐電暈聚酰亞胺薄膜耐電暈漆包線漆等產品,我們仿製了十多年也沒有達到國外先進公司產品的水平就是典型的例子。原因除了工裝設備差等因素外,有些關鍵技術是很難仿製的,比如納米分散技術、粉體表面改性技術等。由於商業和技術壁壘等方面的原因,預計短期內國外不會公開或轉讓這些關鍵技術,我們需要通過自主研究才有可能掌握有關核心技術,縮小與國外技術的差距 [1] 
參考資料