複製鏈接
請複製以下鏈接發送給好友

馬超

(成都理工大學沉積地質研究院教授)

鎖定
馬超,教授(博導)。主要研究方向為:1. 沉積地質學;2. 旋迴地層學;3. 古氣候學;4. 地質大數據;5. 人工智能和知識圖譜。
2004年進入中國地質大學地質學基地班學習,2008年獲得地質學學士學位;2016年獲美國威斯康辛大學麥迪遜分校(University of Wisconsin-Madison)地質學博士學位;2017-2020年先後在美國猶他大學地質系和愛達荷大學計算機系從事博士後研究。2021年2月入職成都理工大學沉積地質研究院。在Nature、Geology、EPSL、GSAB、Methods in Ecology and Evolution、Geoscientific Model Development、Computers & Geosciences等國際期刊發表英文SCI論文26篇。 [1] 
中文名
馬超
國    籍
中國
畢業院校
威斯康辛大學麥迪遜分校
學位/學歷
博士
職    稱
教授

馬超邀請報告

第一屆地球能源與大數據學術研討會(2021)
·地學大數據及地學空間建模(2021)
·GIS Day at University of Idaho (2020)
·Goldschmidt Geochemistry Conference (2020)
·Arizona State University, School of Geographical Sciences and Urban Planning (2019)
·GIS Day at University of Idaho (2019)
·天津大學,表層地球系統科學研究院(2018)
·中國地質大學(武漢),地球科學學院(2018)
·Goldschmidt Geochemistry Conference (2018)
·中國科技大學,地球和空間科學學院(2018)
·南京大學,地球科學與工程學院(2018)
·西北大學,地質系(2018)
·GSA Annual Meeting (2017)
·中山大學,地球科學與工程學院(2017)
·中國地質大學(武漢),地球科學學院(2017)
·George Mason University,大氣海洋和地球科學系(2016)

馬超項目介紹

1. 中國國家自然基金,面上項目,2022年-2025年,60萬,在研,主持
2. 中國國家自然基金地球科學部原創探索計劃項目兩項:
  • 沉積物知識圖譜及其知識演化研究,2021年-2024年,496萬,在研,參與
  • 含油氣盆地巖相古地理解析與智能編圖,2021年-2024年,496萬,在研,參與
3. 美國國家自然基金,面上項目,OAC1835717,Elements: Software: HDR: A knowledge base of deep time to facilitate automated workflows in studying the co-evolution of the geosphere and biosphere,2019年-2023年, 59.7萬美元,在研,參與。
4. 地球科學信息聯盟基金,FUNding Friday Projects,Deep Time Climate Data,2019-07至2019-12,5000美元,完成,主持。
5. 美國國家自然基金,重點項目,EF-1241286,Inter-University Training for Continental-Scale Ecology: Bridging Scales and Systems with Isotopes,2017-02至2019-01,434萬美元,完成,參與。
6. 美國國家自然基金,重點項目,DBI-1565128,Origin Inference from Geospatial Isotope Networks,2017-02至2019-01,150萬美元,完成,參與。
7. 中國科學院前沿科學重點研究項目,新近紀東亞季風的軌道週期變化及其全球意義,2016年-2021年,250萬,完成,參與。
8. 美國國家自然基金,面上項目,EAR1337454,Collaborative Research: Investigating the biotic and paleoclimatic consequences of dust in the Late Paleozoic,2016-08至2017-01,6.7萬美元,完成,參與。
9. 美國國家自然基金,面上項目,EAR1151438,Deciphering the Beat of a Timeless Rhythm - The Future of Astrochronology,2012.09-2016.06,57.6萬美元,結題,參與。
10. 美國國家自然基金,面上項目,EAR0959108,Collaborative Research: Integrating Radioisotopic and Astronomical Time Scales for the Cretaceous,2010-09至2012-08,42萬美元,結題,參與。
11. 中國國家科技部,973計劃課題,2006CB701406,白堊紀重大地質事件與温室氣候變化綜合研究,2008-08至2010-08,1100萬元,結題,參與。

馬超論文成果

[1] Ma, C., Hinnov, L.A., Eldrett, J.S., Meyers, S.R., Bergman, S.C., Minisini, D., Lutz, B., 2021. Centennial to millennial variability of greenhouse climate across the mid-Cenomanian event. [2] 
[2] Ao, H., Rohling, E. J., Zhang, R., Roberts, A. P., Holbourn, A. E., Ladant, J. B., ...Ma, C., ... & An, Z., 2021. Global warming-induced Asian hydrological climate transition across the Miocene–Pliocene boundary. Nature Communications, 12(1), 1-13.
[3] Huang, H., Gao, Y., Ma, C., Niu, L., Dong, T., Tian, X., Cheng, H., Hei, C., Tao, H. and Wang, C., 2021. Astronomical constraints on the development of alkaline lake during the Carboniferous-Permian Period in North Pangea. Global and Planetary Change, p.103681. [3] 
[4] Huang, H., Gao, Y., Ma, C., Jones, M. M., Zeeden, C., Ibarra, D. E., ... & Wang, C., 2021. Organic carbon burial is paced by a~ 173-ka obliquity cycle in the middle to high latitudes. Science Advances, 7(28), eabf9489. [4] 
[5] Jin, S., Liu, S., Li, Z., Chen, A., Ma C., 2021 "Astrochronology of a middle Eocene lacustrine sequence and sedimentary noise modeling of lake-level changes in Dongying Depression, Bohai Bay Basin." Palaeogeography, Palaeoclimatology, Palaeoecology, p.110740. [5] 
[6] Que, X.,Ma, C.*, Ma, X. and Chen, Q., 2021. Parallel computing for Fast Spatiotemporal Weighted Regression.Computers & Geosciences, p.104723. [6] 
[7] Wang, C., Hazen, R.M., Cheng, Q., Stephenson, M.H., Zhou, C., Fox, P., Shen, S.Z., Oberhänsli, R., Hou, Z., Ma, X., Feng, Z., Fan, J.,Ma, C., H, X., Luo, B., Wang, J., 2021. The Deep-time Digital Earth program: data-driven discovery in geosciences.National Science Review. [7] 
[8] Que, X., Ma, X.,Ma, C.*and Chen, Q.,2020. A spatiotemporal weighted regression model (STWR v1. 0) for analyzing local nonstationarity in space and time.Geoscientific Model Development, 13(12), pp.6149-6164. [8] 
[9] Ma, C., Vander Zanden, H.B., Wunder, M.B. and Bowen, G.J., 2020. assignR: An R package for isotope‐based geographic assignment.Methods in Ecology and Evolution. [9] 
[10] Ma, C., Meyers, S.R., Hinnov, L.A., Eldrett, J.S., Bergman, S.C. and Minisini, D., 2020. A method to decipher the time distribution in astronomically forced sedimentary couplets.Marine and Petroleum Geology, p.104399. [10] 
[11] Ma, C., Li, M., 2020. Astronomical time scale of the Turonian constrained by multiple paleoclimate proxies,Geoscience Frontiers. [11] 
[12] Ma, X.,Ma, C.and Wang, C., 2020. A new structure for representing and tracking version information in a deep time knowledge graph.Computers & Geosciences, p.104620. [12] 
[13] Yang, H., Huang, Y., Ma, C.*, Zhang, Z. and Wang, C., 2020. Recognition of Milankovitch cycles in XRF core-scanning records of the Late Cretaceous Nenjiang Formation from the Songliao Basin (northeastern China) and their paleoclimate implications. Journal of Asian Earth Sciences, 194, p.104183. [13] 
[14] Ma, C,Meyers R.S., Sageman B.B., 2019, Testing Late Cretaceous astronomical solutions in a 15 million year astrochronologic record from North America.Earth Planet. Sci. Lett. 513, 1–11. [14] 
[15] Ma, C,Meyers R.S., Sageman B.B., 2017, Late Cretaceous Secular Resonances and Confirmation of the Chaotic Behavior of the Solar System.
[16] Matthias Sinnesael, David De Vleeschouwer, Christian Zeeden, Sietske J. Batenburg, Da Silva Anne-Christine, Niels J. de Winter, Jaume Dinarès-Turell, Anna Joy Drury, Gabriele Gambacorta, Frits Hilgen, Linda Hinnov, Alexander J.L. Hudson, David B. Kemp, Margriet Lantink, Jiri Laurin, Mingsong Li, Diederik Liebrand,Chao Ma, Stephen Meyers, Johannes Monkenbusch, Sandro Montanari, Theresa Nohl, Heiko Pälike, Damien Pas, Micha Ruhl, Nicolas Thibault, Maximilian Vahlenkamp, Luis Valero, Sébastien Wouters, Huaichun Wu, Philippe Claeys. 2019. The Cyclostratigraphy Intercomparison Project (CIP): consistency, merits and pitfalls.Earth-Science Reviews, p.102965.
[17] Zhang, C., Jiang, S., Liu, D.D., Chakrabarti, R., Zeng, J.H., Santosh, M., Luo, Q., Spencer, C.J.,Ma, C., Liu, L.F. and Kong, X.Y., 2019. A novel model for silicon recycling in the lithosphere: Evidence from the Central Asian Orogenic Belt.Gondwana Research,76, pp.115-122. [15] 
[18] Ma, C, Meyers, R.S., Sageman, B.B., Jicha B., Singer, B., 2014, Testing the Astronomical Time Scale for Oceanic Anoxic Event 2, and its Extension into Cenomanian Strata of the Western Interior Basin.GSA Bulletin. [16] 
[19] Carvajal, C.P., Soreghan, G.S., Isaacson, P.E.,Ma, C., Hamilton, M.A., Hinnov, L.A. and Dulin, S.A., 2018. Atmospheric dust from the Pennsylvanian Copacabana Formation (Bolivia): A high-resolution record of paleoclimate and volcanism from northwestern Gondwana.Gondwana Research. 58, 105-121. [17] 
[20] Ma, P., Wang, C., Meng, J.,Ma, C., Zhao, X., Li, Y. and Wang, M., 2017. Late Oligocene-early Miocene evolution of the Lunpola Basin, central Tibetan Plateau, evidences from successive lacustrine records.Gondwana Research, 48, pp.224-236. [18] 
[21] Eldrett, J.S.,Ma, C., Bergman, S.C., Ozkan, A., Minisini, D., Lutz, B., Jackett, S.J., Macaulay, C., Kelly, A.E., 2015. Origin of limestone–marlstone cycles: astronomic forcing of organic-rich sedimentary rocks from the Cenomanian to early Coniacian of the Cretaceous Western Interior Seaway, USA.Earth Planet. Sci. Lett.423, 98–1 [19]  13.
[22] Eldrett, J.S.,Ma, C., Bergman, S.C., Lutz B., Gregory, J., Dodsworth, P., Phipps M., Hardas P., Minisini, D., Ozkan, A., Ramezani, J., Bowring, S.A., Kamo, S.L., Ferguson, K., Macaulay, C., Kelly, A.E.,2015, An astronomically calibrated stratigraphy of the Cenomanian, Turonian and earliest Coniacian from the Cretaceous Western Interior Seaway, USA: Implications for global chronostratigraphy. Cretaceous Research, v. 56, p.316-344. [20] 
[23] Chen, X., Wang, C., Wu, H., Kuhnt, W., Jia, J., Holbourn, A., Zhang, L. and Ma, C., 2015. Orbitally forced sea-level changes in the upper Turonian–lower Coniacian of the Tethyan Himalaya, southern Tibet.Cretaceous Research, 56, pp.691-701. [21] 
[24] Chen X., Wang C., Kuhnt W., Holbourn A., Huang Y.,Ma,C., 2011,Lithofacies, microfacies and depositional environments of Upper Cretaceous Oceanic Red Beds (Chuangde Formation) in southern Tibet.Sedimentary Geology, 235(2011) 100-110. [22] 
[25] Li, Y., Wang, C., Zhao, X., Yin, A., and Ma, C., 2012. Cenozoic thrust system, basin evolution, and uplift of the Tanggula Range in the Tuotuohe region, central Tibet.Gondwana Research, 22, pp.482-492. [23] 
[26] Li, Y., Wang, C.,Ma, C., Xu, G. and Zhao, X., 2011, Balanced cross-section and crustal shortening analysis in the Tanggula-Tuotuohe Area, Northern Tibet.Journal of Earth Science, 22(1).
[27] Li, Y., Wang, C., Xu, G., Zhao, X.,Ma, C., 2010, Crustal Shortening in the Tanggula-Tuotuohe Area, Northern Tibet, in Leech, M.L., and others, eds., Proceedings for the 25th Himalaya-Karakoram-Tibet Workshop: U.S. Geological Survey, OpenFile Report 2010-1099, 2 p.
[28] Li Y., Wang C., Li Y.,Ma, C., Wang L., Peng S., 2010, The Cretaceous tectonic event in the Qiangtang Basin and its implications for hydrocarbon accumulation.Petroleum Science, 7: 466-471. [24] 
[29] 李林, 周錫強, 黃永建, 馬超, 2009. 色度學方法的深時研究: 以藏南貢扎剖面白堊系賽諾曼/土侖階為例. 地學前緣, 16(5), 153.
[30] 馬超, 王成善, 陳曦, 黃永健, 2009. 藏南晚白堊世旋迴地層學研究: 以定日貢扎剖面為例. 地學前緣, 16(5), 134.
參考資料
展開全部 收起