複製鏈接
請複製以下鏈接發送給好友

餘江龍

(蒙納士大學蘇州校區副校長及聯合研究生院澳方院長,蒙納士科學技術研究院高級首席研究員,蒙納士大學教授)

鎖定
餘江龍 1965年7月生,教授,博士學位,現任蒙納士大學蘇州校區副校長,東南大學-蒙納士大學蘇州聯合研究生院澳方院長, 蘇州工業園區蒙納士科學技術研究院高級首席研究員, 蒙納士大學化工系教授 [1]  , 紐卡斯爾大學化工系榮譽教授 [2] 
長期從事能源環保與納米材料技術的研發工作,主要研究方向有碳質資源高效清潔轉化和雙碳技術、先進煤焦化技術、先進碳材料、氫能大規模生產和利用技術、煤焦化過程智能化技術等 [1]  。承擔和獲資助的科研項目56項 [1]  ,承擔有中澳JCG雙邊合作項目、澳大利亞ARC Linkage項目、ANLEC項目、ACARP項目、國家973項目子課題和國家自然科學基金等項目 [4-5]  。培養博士研究生26名、碩士研究生42名 [1]  。在行業認可的國際期刊和國際學術會議上發表學術論文235篇,其中期刊論文196篇,會議論文39篇 [1]  ,參編英文專著1部,主編譯著1部 [3]  ,授予國家發明專利14項 [1]  。與澳大利亞,韓國以及中國許多高校及研究機構等保持良好的合作關係 [1]  。曾擔任《Fuel Processing Technology》(2019年)、《Fuel》(2010年)、《The International Journal of Hydrogen Energy》(2020年)、《Energy and Fuels》(2020年)等期刊的客座編輯,並擔任《Bioresource Technology》(2015-2021年)的編委 [1] 
中文名
餘江龍
國    籍
中國
民    族
漢族
出生日期
1965年7月
畢業院校
紐卡斯爾大學
遼寧工程技術大學
職    業
教師

餘江龍個人經歷

餘江龍工作經歷

  • 2022年4月-: 蒙納士大學蘇州校區副校長 [1] 
  • 2021年1月-:東南大學-蒙納士大學蘇州聯合研究生院澳方院長、蒙納士蘇州科學技術研究院高級首席研究員、蒙納士大學化工系教授 [1]  、紐卡斯爾大學化工系榮譽教授 [2] 
  • 2014年1月-2021年1月:澳大利亞紐卡斯爾大學工程學院化工系教授,碳資源國際聯合中心(ICCCF)主任 [2] 
  • 2011年3月-2014年1月:遼寧科技大學化工學院教授、博導、化工學院院長,省先進煤焦化重點實驗室主任,清潔能源與燃料化學研究所所長 [1-2] 
  • 2004年12月-2011年3月:瀋陽航空航天大學能源與動力學院教授,熱能研究所所長 [1-2]  [6] 
  • 2003年1月-2004年12月:莫納什大學化工系博士後 [1-2] 
  • 1991年4月-1998年9月:阜新礦業學院(現遼寧工程技術大學)機械系金屬材料教研室從事科研與教學 [6] 

餘江龍學習經歷

  • 2003年1月, 澳大利亞紐卡斯爾大學化工專業博士學位 [1] 
  • 1991年4月, 阜新礦業學院(現遼寧工程技術大學)礦山機械工程專業碩士學位 [1] 
  • 1988年7月, 阜新礦業學院(現遼寧工程技術大學)金屬材料熱處理工程本科學士學位 [1] 

餘江龍主講課程

Kinetics and Reaction Engineering, Chemical Reactor Design, Advanced Coal Chemistry, Combustion Science and Technology [2] 

餘江龍研究項目

各類項目數56,研究總經費757 萬澳元 [7]  ,承擔有中澳JCG雙邊合作項目、澳大利亞ARC Linkage項目、ANLEC項目、ACARP項目、國家973項目子課題和國家自然科學基金等項目 [4-5] 
2020
  • ARCResearch Hub for Australian Steel Innovation,380,838, Funding body: BHP BillitonInnovation Pty Ltd
  • In-situ study of the permeability of the plastic layers of Australian coking coals using an advanced permeability test apparatus, 154,000, Funding body: Australian Coal Research Limited.
  • Understanding of the mechanism of chemical interaction between vitrinite and inertinite, 149,500, Funding body: Australian Coal Research Limited
2019
  • Carbon structure transformation in the plastic layer and coke of Australian coking coals: better understanding of coke strength and reactivity, 144,900, Funding body: Australian Coal Research Limited.
  • Comprehensive technical review on coal quality impacts on High-Efficiency Low-Emission(HELE) coal combustion for power generation, 79,900, Funding body: Australian Coal Research Limited
  • Effect of Blend Characteristics on the High-Temperature Strength Evolution and Relevant Mechanisms in Cokes, 22,000, Funding body: Australian Coal Research Limited
  • Advanced aqueous ammonia based project, 13,636, Funding body: CSIRO - Commonwealth Scientific and Industrial Research Organisation
  • Synchrotron IR study on chemical structure transition inside coke/semi-coke region, 1,427, Funding body: ANSTO (Australian Nuclear Science and Technology Organisation)
  • Examining underlying physical mechanisms of separated maceral concentrates of coking coals during plastic layer formation through micro-CT imaging and analysis, 1,427, Funding body: ANSTO (Australian Nuclear Science and Technology Organisation)
  • An investigation of the effects of liptinite maceral on the physical structure of the plastic layers formed from Australian coking coals using the Synchrotron micro-CT,1,427, Funding body: ANSTO (Australian Nuclear Science and Technology Organisation)
  • Examining the physical structure of plastic layer formed during the coking process of coal blends with different ranks using micro-CT imaging and analysis, 1,413, Funding body: ANSTO (Australian Nuclear Science and Technology Organisation)
  • Synchrotron IR study of chemical structure transformation of the plastic layer during coal coking process, 1,361, Funding body: Australian Synchrotron
2018
  • Plastic Layer Formation during Blending of Australian Coking Coals with Weakly Coking and Non-Coking Coals using the UON 4kg Lab Scale Coke Oven, 135,500, Funding body: Australian Coal Research Limited
  • High Tech Combustion testing Facility for Evaluating Combustion Performance for Thermal Coals and Establishment of Testing Methodology, 106,530, Funding body: Australian Coal Research Limited
  • Efficient combustion flue gas treatment technology development: a demonstration facility design, 100,000, Funding body: Department of Science and Technology of Liaoning Province
  • Enhancement of Australian-Korean Collaboration Capacity for Sustainable Energy Research, 24,492, Funding body: Department of Foreign Affairs and Trade
  • Investigation of the effects of coal rank and maceral concentrates on microstructures of the plastic layer through micro-CT imaging analysis, 1,329, Funding body: ANSTO (Australian Nuclear Science and Technology Organisation)
2017
  • ACARP Project C27001 - Maritime Regulation Project for Coal Self Heating Research and Assessment, 1,750,775, Funding body: Australian Coal Research Limited
  • Mechanistic study of the product distribution and control of single-ringed aromatic chemicals from catalytic microwave pyrolysis of lignite, 146,586, Funding body: National Natural Science Foundation of China
  • Review of ACARP research to support marketing of Australian thermal coal, 102,200, Funding body: Australian Coal Research Limited
  • Relevance of maceral concentrates to whole coal coking predicts, 69,500, Funding body: Australian Coal Research Limited
  • Physical and chemical interactions occurring between macerals during cokemaking and their influence on coke strength, 54,750, Funding body: Australian Coal Research Limited
  • Establishment of Australia-Korea Collaborative Research Network for Clean Energy Technology, 22,506, Funding body: Department of Foreign Affairs and Trade
  • Examining underlying physical mechanisms of plastic layer through micro/CT imaging and analysis, 1,228, Funding body: ANSTO (Australian Nuclear Science and Technology Organisation)
2016
  • Combining Redox Energy Storage With Coal-Fired Power Generation: A Novel Approach to Manage Variable Load Without the Need to Cycle Coal-Fired Generating Units, 383,663, Funding body: NSW Department of Industry Skills and Regional Development
  • Scope study of technological options for SOx treatment for CTSCo project, 377,949, Funding body: Australian National Low Emissions Coal Research & Development
  • Innovative Integrated Combustion Flue Gas Dry Cleaning Technology, 239,539, Funding body: ARC (Australian Research Council)
  • Assessment of self-heating test standards and their applicability for determining self-heating susceptibility within coal storage and transport systems, 194,800, Funding body: Australian Coal Research Limited
  • Optimising the performance of solid bowl centrifuge for tailing dewatering, 125,560, Funding body: Australian Coal Research Limited
  • Using high range mass spectrometry to study the link between coal structure, coke strength and thermoplastic chemistry in blends, 104,240, Funding body: Australian Coal Research Limited
  • Innovative Integrated Combustion Flue Gas Dry Cleaning Technology, 102,000, Funding body: Sinosteel Anshan Research Institute of Thermo-Energy Co. Ltd
  • Concentrating coke oven sized inertinite particles to study their behaviour in targeted coking blends, 91,690, Funding body: Australian Coal Research Limited
  • Manufacturing High Value Carbon Products and Chemicals from Spent Tyres, 20,000, Funding body: ARC (Australian Research Council)
2015
  • An in-situ study of the plastic layer formation in coking coals using a lab-scale test furnace, 213,530, Funding body: Australian Coal Research Limited
2014
  • Mechanstic study on the interaction of pore water with lignite surface chemicial structure,170,000, Funding body: NSFC
2013
  • Mechanistic study on effects of pre-drying on oxy-fuel combustion characteristics of Shenhua lignite, 150,000, Funding body: National Natural Science Foundation of China
  • Desulfurization experimental setup and lab upgrading, 45,000, Desulfurization experimental setup and lab upgrading, Funding body: Shenyang Aerospace University match funding for NSFC
2012
  • Study on the effects of super heated steam drying on the low temperature oxidation of Chinese lignite and Australian Brown Coal, 12,000, Funding body: International Collaborative Project of Natural Science Foundation of China
2011
  • Clean utilization of Chinese coal and biomass for sustainable energy supply, 650,000, Funding body: University of Science and Technology Liaoning
  • Liaoning Province Outstanding Professorship Program, 200,000, Funding body: Liaoning Province
  • Steam drying and binderless briquetting of Chinese Shenhua lignite, 150,000, Funding body: National Natural Science Foundation of China
  • Integrated hot coal gas cleaning using iron-based sorbents supported on lignite chars, 56,000, Funding body: National Natural Science Foundation of China
  • Fundamental studies on integrated hot coal gas cleaning using iron-based sorbents supported on lignite chars, 25,000, Funding body: the Postgraduate Education Funding of the Ministry of Education of China
  • Study of steam drying and oxy-fuel combustion of Australian brown coal and Chinese lignite, 15,000, Funding body: Australia–China Joint Coordination Group on Clean Coal Technology Research and Development Grants
2010
  • Mechanistic study on hot coal gas desulphuriztion using iron-based sorbents supported on chars, 60,000, Funding body: National Natural Science Foundation of China
  • Mechanistic study on cenosphere formation during oxy-coal combustion, Outstanding Researchers at Liaoning High Education Institutions Funding Scheme, 20,000, Funding body: Liaoning Provincial Education Department
2009
  • Production of cenospheres using fly ash from coal fired power stations, 135,000, Production of cenospheres using fly ash from coal fired power stations, Funding body: Liaoning Fu-An Co, China
  • Comparative study of Daning Coal for PCI application, 35,000, Comparative study of Daning Coal for PCI application,Funding body: Banpu Public Company
  • Feasibility study on brown coal drying and upgrading--process development for Shenhua lignites, 20,000, Funding body: Luoyang Wanshan Hi-tech Engineering Company Ltd, China
  • Lab study of cenosphere production from coal fly ash, 15,000, Funding body: Newcastle Innovation
2007
  • Drying and briquetting of Indonesian low rank coal (Stage I), 68,000, Funding body: National Natural Science Foundation of China
2006
  • Interactions between metallic species of sorbents for hot coal gas desulphurization, 120,000, Funding body: 973 National Basic Research Program
  • Assessment of thermal efficiency of CFB boilers of Chengfeng Power Plant, 30,000, Funding body: Peak Pacific (China) Investment Ltd (Beijing), Banpu Co. Thailand
  • Synthesis of iron nano-film using CVD method, 6,000, Funding body: Liaoning Education Department project
2005
  • Desulfurization of hot coal gases using Fe-based sorbents for integrated poly-generation of coal, 160,000, Funding body: National 973 Basic Research Program of China

餘江龍論文發表

發表專著2部,論文總數235篇,期刊論文196篇,會議論文39篇,Scopus的Hi 因子是36 [1] 

餘江龍專著

  • Yu, J., Lucas, J. A., & Wall, T.F. (2006). The Formation of Char's Structure During the Devolatilization of pulverized Coal. In S. Z. Jiang (Ed.), Focus on Combustion Research (pp. 1-54).Hauppauge: Nova Science Publishers [3]  .
  • Yu, J. L., & Chang, L. P.(2009). Advances in the Science of Victorian Brown Coal (C.Z. Li, Elsevier2004) Translation. Beijing: Chemical Industry Press China [3]  .

餘江龍代表論文

(*通訊作者) [3] 
英文
  • Chen, Y., Lee, S., Tahmasebi, A., Liu, M., Zhang, T., Bai, J., ... & Yu, J*. (2022). Mechanism of carbon structure transformation in plastic layer and semi-coke during coking of Australian metallurgical coals. Fuel, 315, 123205.
  • Wang, J., Tian, L., Li, G., Zhao, X., Liang, Y., & Yu, J*. (2021). Construction of vitrinite molecular structures based on 13C NMR and FT-IR analysis: Fundamental insight into coal thermoplastic properties. Fuel, 300, 120981.
  • Omoriyekomwan, J. E., Tahmasebi, A., Dou, J., Wang, R., & Yu, J*. (2021). A review on the recent advances in the production of carbon nanotubes and carbon nanofibers via microwave-assisted pyrolysis of biomass. Fuel Processing Technology, 214, 106686.
  • Zhang, J., Tahmasebi, A., Omoriyekomwan, J. E., & Yu, J*. (2021). Microwave-assisted synthesis of biochar‑carbon-nanotube-NiO composite as high-performance anode materials for lithium-ion batteries. Fuel Processing Technology, 213, 106714.
  • Matamba, T., Tahmasebi, A., Rish, S. K., & Yu, J*. (2021). Understanding the enhanced production of poly-aromatic hydrocarbons during the pyrolysis of lignocellulosic biomass components under pressurized entrained-flow conditions. Fuel Processing Technology, 213, 106645.
  • Chen, Y., Lee, S., Tahmasebi, A., Bai, J., Vongsvivut, J., & Yu, J*. (2020). Chemical structure transformation during the later stage of plastic layers during coking using Synchrotron infrared microspectroscopy technique. Fuel, 273, 117764.
  • Chen, Y., Lee, S., Tahmasebi, A., Bai, J., Mahoney, M., & Yu, J*. (2020). A review of the state-of-the-art research on carbon structure evolution during the coking process: From plastic layer chemistry to 3D carbon structure establishment. Fuel, 271, 117657.
  • An, Y., Tahmasebi, A., Zhao, X., Matamba, T., & Yu, J*. (2020). Catalytic reforming of palm kernel shell microwave pyrolysis vapors over iron-loaded activated carbon: Enhanced production of phenol and hydrogen. Bioresource Technology, 306, 123111.
  • Lee, S., Mahoney, M., & Yu, J*. (2020). Advances in the understanding of the formation and chemistry of the plastic layer during coke-making: A comprehensive review. Fuel, 263, 116655.
  • Zhao, Y., Dou, J., Duan, X., Chai, H., Oliveira, J., & Yu, J*. (2020). Adverse effects of inherent CaO in coconut shell-derived activated carbon on its performance during flue gas desulfurization. Environmental Science & Technology, 54(3), 1973-1981.
  • Omoriyekomwan, J. E., Tahmasebi, A., Zhang, J., & Yu, J*. (2019). Mechanistic study on direct synthesis of carbon nanotubes from cellulose by means of microwave pyrolysis. Energy Conversion and Management, 192, 88-99.
  • Lee, S., Yu, J.*, Mahoney, M., Tahmasebi, A., Stanger, R., Wall, T., & Lucas, J. (2019). In-situ study of plastic layers during coking of six Australian coking coals using a lab-scale coke oven. Fuel Processing Technology, 188, 51-59.
  • Lee, S., Yu, J.*, Mahoney, M., Tremain, P., Moghtaderi, B., Tahmasebi, A., ... & Lucas, J. (2019). Study of chemical structure transition in the plastic layers sampled from a pilot-scale coke oven using a thermogravimetric analyzer coupled with Fourier transform infrared spectrometer. Fuel, 242, 277-286.
  • Dou, J., Zhao, Y., Yin, F., Li, H., & Yu, J*. (2018). Mechanistic study of selective absorption of NO in flue gas using EG-TBAB deep eutectic solvents. Environmental science & technology, 53(2), 1031-1038.
  • Yu, J*., Maliutina, K., & Tahmasebi, A. (2018). A review on the production of nitrogen-containing compounds from microalgal biomass via pyrolysis. Bioresource technology, 270, 689-701.
  • Lee, S., Yu, J*., Mahoney, M., Tremain, P., Moghtaderi, B., & Tahmasebi, A. (2018). A study on the structural transition in the plastic layer during coking of Australian coking coals using Synchrotron micro-CT and ATR-FTIR. Fuel, 233, 877-884.
  • Maliutina, K., Tahmasebi, A., & Yu, J*. (2018). The transformation of nitrogen during pressurized entrained-flow pyrolysis of Chlorella vulgaris. Bioresource technology, 262, 90-97.
  • Maliutina, K., Tahmasebi, A., & Yu, J*. (2018). Pressurized entrained-flow pyrolysis of microalgae: enhanced production of hydrogen and nitrogen-containing compounds. Bioresource technology, 256, 160-169.
  • Xing, B., Zhang, C., Cao, Y., Huang, G., Liu, Q., Zhang, C., ... & Yu, J*. (2018). Preparation of synthetic graphite from bituminous coal as anode materials for high performance lithium-ion batteries. Fuel Processing Technology, 172, 162-171.
  • Bikbulatova, S., Tahmasebi, A., Zhang, Z., Rish, S. K., & Yu, J*. (2018). Understanding water retention behavior and mechanism in bio-char. Fuel Processing Technology, 169, 101-111.
  • Huang, F., Tahmasebi, A., Maliutina, K., & Yu, J*. (2017). Formation of nitrogen-containing compounds during microwave pyrolysis of microalgae: Product distribution and reaction pathways. Bioresource technology, 245, 1067-1074.
  • Omoriyekomwan, J. E., Tahmasebi, A., Zhang, J., & Yu, J*. (2017). Formation of hollow carbon nanofibers on bio-char during microwave pyrolysis of palm kernel shell. Energy Conversion and Management, 148, 583-592.
  • Xing, B., Yuan, R., Zhang, C., Huang, G., Guo, H., Chen, Z., ... & Yu, J*. (2017). Facile synthesis of graphene nanosheets from humic acid for supercapacitors. Fuel Processing Technology, 165, 112-122.
  • Maliutina, K., Tahmasebi, A., Yu, J*., & Saltykov, S. N. (2017). Comparative study on flash pyrolysis characteristics of microalgal and lignocellulosic biomass in entrained-flow reactor. Energy Conversion and Management, 151, 426-438.
  • Bikbulatova, S., Tahmasebi, A., Zhang, Z., & Yu, J*. (2017). Characterization and behavior of water in lignocellulosic and microalgal biomass for thermochemical conversion. Fuel Processing Technology, 160, 121-129.
  • Xu, J., Tahmasebi, A., & Yu, J*. (2016). An experimental study on the formation of methoxyaromatics during pyrolysis of eucalyptus pulverulenta: yields and mechanisms. Bioresource Technology, 218, 743-750.
  • Zhao, H., Geng, X., Yu, J*., Xin, B., Yin, F., & Tahmasebi, A. (2016). Effects of drying method on self-heating behavior of lignite during low-temperature oxidation. Fuel Processing Technology, 151, 11-18.
  • Yang, N., Yu, J*. L., Dou, J. X., Tahmasebi, A., Song, H., Moghtaderi, B., ... & Wall, T. (2016). The effects of oxygen and metal oxide catalysts on the reduction reaction of NO with lignite char during combustion flue gas cleaning. Fuel Processing Technology, 152, 102-107.
  • Mamaeva, A., Tahmasebi, A., Tian, L., & Yu, J*. (2016). Microwave-assisted catalytic pyrolysis of lignocellulosic biomass for production of phenolic-rich bio-oil. Bioresource Technology, 211, 382-389.
  • Tahmasebi, A., Zheng, H., & Yu, J*. (2016). The influences of moisture on particle ignition behavior of Chinese and Indonesian lignite coals in hot air flow. Fuel Processing Technology, 153, 149-155.
  • Nwaka, D., Tahmasebi, A., Tian, L., & Yu, J*. (2016). The effects of pore structure on the behavior of water in lignite coal and activated carbon. Journal of colloid and interface science, 477, 138-147.
  • Li, X., Dong, Z., Dou, J., Yu, J*., & Tahmasebi, A. (2016). Catalytic reduction of NO using iron oxide impregnated biomass and lignite char for flue gas treatment. Fuel Processing Technology, 148, 91-98.
  • Omoriyekomwan, J. E., Tahmasebi, A., & Yu, J*. (2016). Production of phenol-rich bio-oil during catalytic fixed-bed and microwave pyrolysis of palm kernel shell. Bioresource technology, 207, 188-196.
  • Gao, Y., Tahmasebi, A., Dou, J., & Yu, J*. (2016). Combustion characteristics and air pollutant formation during oxy-fuel co-combustion of microalgae and lignite. Bioresource technology, 207, 276-284.
  • Tahmasebi, A., Yu, J*.., Han, Y., & Li, X. (2012). A study of chemical structure changes of Chinese lignite during fluidized-bed drying in nitrogen and air. Fuel Processing Technology, 101, 85-93.
  • Yu, J*., Tahmasebi, A., Han, Y., Yin, F., & Li, X. (2013). A review on water in low rank coals: The existence, interaction with coal structure and effects on coal utilization. Fuel Processing Technology, 106, 9-20.
  • Yu, J.*, Yin, F., Wang, S., Chang, L., & Gupta, S. (2013). Sulfur removal property of activated-char-supported Fe–Mo sorbents for integrated cleaning of hot coal gases. Fuel, 108, 91-98.
  • Yin, F., Yu, J*., Gupta, S., Wang, S., Wang, D., & Dou, J. (2014). Comparison of desulfurization characteristics of lignite char-supported Fe and Fe–Mo sorbents for hot gas cleaning. Fuel processing technology, 117, 17-22.
  • Tahmasebi, A., Yu, J*., Su, H., Han, Y., Lucas, J., Zheng, H., & Wall, T. (2014). A differential scanning calorimetric (DSC) study on the characteristics and behavior of water in low-rank coals. Fuel, 135, 243-252.
  • Song, Y., Tahmasebi, A., & Yu, J*. (2014). Co-pyrolysis of pine sawdust and lignite in a thermogravimetric analyzer and a fixed-bed reactor. Bioresource technology, 174, 204-211.
  • Yuan, T., Tahmasebi, A., & Yu, J*. (2015). Comparative study on pyrolysis of lignocellulosic and algal biomass using a thermogravimetric and a fixed-bed reactor. Bioresource Technology, 175, 333-341.
  • Tahmasebi, A., Jiang, Y., Yu, J*., Li, X., & Lucas, J. (2015). Solvent extraction of Chinese lignite and chemical structure changes of the residue during H2O2 oxidation. Fuel Processing Technology, 129, 213-221.
  • Zhao, H., Yu, J*., Liu, J., & Tahmasebi, A. (2015). Experimental study on the self-heating characteristics of Indonesian lignite during low temperature oxidation. Fuel, 150, 55-63.
  • Dou, J., Yu, J*., Tahmasebi, A., Yin, F., Gupta, S., Li, X., ... & Wall, T. (2015). Ultrasonic-assisted preparation of highly reactive Fe–Zn sorbents supported on activated-char for desulfurization of COG. Fuel Processing Technology, 135, 187-194.
  • Xing, B. L., Guo, H., Chen, L. J., Chen, Z. F., Zhang, C. X., Huang, G. X., ... & Yu, J*. L. (2015). Lignite-derived high surface area mesoporous activated carbons for electrochemical capacitors. Fuel Processing Technology, 138, 734-742.
中文
  • 竇金孝, 趙永奇, 段曉諝, 柴紅寧, & 餘江龍*. (2020). 絡合亞鐵乙二醇-四丁基溴化銨低共熔溶劑協同吸收so2和no. 化工進展, 39(2), 8. [8] 
  • 田露, 竇金孝, & 餘江龍*. (2018). 氧化鎂濕法煙氣脱硫反應特性的分析. 冶金能源, 37(2), 6. [9] 
  • 田露, 餘江龍*, 趙小蕙, 陳義, & Arash TAHMASEBI. (2018). 熱處理對肥煤熱解揮發分析出特性的影響. 煤炭轉化, 41(2), 8. [10] 
  • 楊寧, 竇金孝, 趙永奇, 尹豐魁, & 餘江龍*. (2018). 負載金屬催化劑的褐煤活性半焦脱除煙氣中no性能及機理. 化工進展, 37(3), 7. [11] 
  • 安楊, 王南, 徐靜, 張春霞, & 餘江龍*. (2018). 褐煤與棕櫚殼微波共熱解特性實驗研究. 煤炭轉化, 41(1), 7. [12] 
  • 楊寧, 竇金孝, 張春霞, 趙永奇, & 餘江龍*. (2017). 負載複合金屬催化劑的活性半焦脱除煙氣中no的非等温動力學研究. 煤炭轉化, 40(6), 7. [13] 
  • 趙歡, 辛斌斌, 李永健, Arash TAHMASEBI, 李記, 曾文, 耿秀振,& 餘江龍*. (2017). 褐煤氧化自熱過程中化學結構的演變. 煤炭轉化, 40(2), 5. [14] 
  • 王紫萱, 竇金孝, 田露, & 餘江龍*. (2016). 褐煤半焦水蒸氣氣化特性及動力學研究. 煤炭轉化, 39(4), 5. [15] 
  • 安楊, 徐靜, ArashTahmasebi, & 餘江龍*. (2016). 花生殼和松木屑固定牀低温熱解特性的實驗研究. 可再生能源, 34(12), 5. [16] 
  • 李先春, 熊祖寧, 董珍, 竇金孝, & 餘江龍*. (2016). 生物質和褐煤共氣化半焦吸附煙氣so2的研究. 煤炭轉化, 39(4), 6. [17] 
  • 馮宇, 徐靜, 竇金孝, 李先春, & 餘江龍*. (2016). 半焦負載fe基脱硫劑脱硫及再生性能研究. 煤炭轉化, 39(2), 6. [18] 
  • 田露, Arash Tahmasebi, 李先春, & 餘江龍*. (2015). 氧化鎂活性及用於煙氣脱硫的實驗研究. 化工礦物與加工, 44(4), 4. [19] 
  • 宋禹瑤, 李先春, Arash Tahmasebi, & 餘江龍*. (2015). 煙煤與生物質固定牀共熱解實驗研究. 煤炭轉化, 38(4), 7. [20] 
  • 王南, 餘江龍*, Arash Tahmasebi, 黃峯, & 徐靜. (2015). 煤與生物質微波共熱解特性實驗研究. 煤炭轉化, 38(4), 7. [21] 
  • 劉鈞帥, 趙歡, 張靜, 耿秀振, 辛斌斌, & 餘江龍*. (2015). 褐煤自燃過程中自熱特性的試驗研究. 煤礦安全, 46(7), 5. [22] 
  • 竇金孝, 李先春, 餘江龍*, 尹豐魁, & 佟哲磊. (2015). 半焦負載鐵基脱硫劑及其焦爐煤氣脱硫特性. 煤炭轉化, 38(3), 6. [23] 
  • 肖武, 餘江龍*, & 韓豔娜. (2014). 褐煤含氧官能團對褐煤中水分特性的影響. 煤炭轉化, 37(4), 5. [24] 

餘江龍期刊

  • 2019, Guest Editor of Special Issues of Fuel Processing Technology [2]  .
  • 2019, Guest Editor of Special Issues of International Journal of Hydrogen Energy [2]  .
  • 2019, Co-Chair of Organizing Committee, International Symposium on Clean Energy and Advanced Materials (CEAM2019), 25-28 Sept, Busan, Korea. [1] 
  • 2018, Chair of Organizing Committee, International Symposium on Clean Energy and Advanced Materials (CEAM2018), 13-17 Aug, Newcastle, Australia [1]  .
  • 2015, Editorial board member of “Bioresource Technology” (JIF=6.668) [5]  .
  • Volunteered reviewer for more than 10 international journals, including: Fuel Processing Technology, Fuel, Energy & Fuels, BioresourceTechnology, Journal of Thermal Analysis and Calorimetry, Energy Conversion and Management, etc [2]  .
  • 2012, Co-Chair of Organizing Committee, member of TechnicalCommittee, 2012 International Conference for Clean Technology of Coal and Biomass Utilization. June 28-30, 2012, Anshan, China; Guest editor of Special Issue of Fuel Processing Technology [2]  .
  • 2008, Technical secretary of the local organization committee, 7th InternationalConference on Gas Cleaning at High Temperatures, session chair, guest editor for the special issue of FUEL, May 2007 to June 2008, Newcastle, Australia [2]  .
參考資料
展開全部 收起