複製鏈接
請複製以下鏈接發送給好友

陳人傑

(北京理工大學材料學院教授,博士生導師)

鎖定
陳人傑,男,博士,畢業於北京理工大學,北京理工大學教授,博士生導師 [1-2] 
中文名
陳人傑
國    籍
中國
民    族
漢族
畢業院校
北京理工大學
職    業
教師
職    稱
教授

陳人傑人物經歷

陳人傑 陳人傑
2002年師從北京理工大學吳鋒教授,2005獲工學博士學位;2005-2007年,在清華大學化學系物理化學專業師從陳立泉院士、邱新平教授從事博士後研究工作;2007年入職北京理工大學;2012-2013年,在英國劍橋大學材料科學與冶金系Prof. Derek Fray、Dr. Vasant R. Kumar課題組訪問研究;現為北京理工大學材料學院教授、博導 [3]  北京電動車輛協同創新中心(國家級)研究員 [4] 

陳人傑學術兼職

現擔任國家部委專業組委員、中國材料研究學會理事(能源轉換與存儲材料分會秘書長)、中國硅酸鹽學會固態離子學分會理事、國際電化學能源科學學會(IAOEES)理事、中國化工學會化工新材料專業委員會委員、中國電池工業協會全國電池行業專家、《中國材料進展》青年編委、《儲能與動力電池技術及應用》叢書編委、中國科學技術出版社有限公司科技/科普專家等 [5] 

陳人傑教學和科研

陳人傑教學成果

作為主講教師先後承擔了本科生課程《綠色電源技術》、《科技文獻檢索》、《固體廢棄物處理與處置》、《化學電源測試原理與技術》和研究生課程《綠色能源材料導論》、《固體廢棄物資源化利用與再生》、《能源及環境材料設計計算與建模》;作為項目負責人承擔了教育教學改革專項項目《構建化學電源測試原理與技術虛擬仿真實驗的培養模式》;在新能源材料與器件專業的教學工作中編制並講述《電池發展簡史》、《綠色能源與電動汽車》、《中外新能源汽車發展趨勢及德日車企見聞》、《歐洲環保產業發展啓示》、《新型能源關鍵材料與功能器件》、《多電子高比能電池新體系及關鍵材料研究》等主題報告 [5] 
陳人傑 陳人傑
作為指導教師指導優秀本科生和研究生參加國家大學生創新性實驗計劃項目,指導本科團隊參加了中國大學生社會實踐知行促進計劃——2019年第二屆LG化學中國大學生動力電池創新競賽,獲知行計劃“優秀指導教師”榮譽稱號。指導的研究生先後多人次獲得國家獎學金、工信部創新/創業獎學金、北京市優秀畢業生、中國複合材料學會優秀博士學位論文、中國顆粒學會優秀博士學位論文、北京理工大學徐特立獎學金、北京理工大學優秀博士學位論文和北京理工大學優秀碩士學位論文等獎勵 [5] 

陳人傑研究領域

陳人傑 陳人傑
基於大規模儲能、新能源汽車、航空航天等領域對高性能電池的重大需求,針對高比能長航時電池新體系的設計與製造、二次電池安全性/温度適應性、超薄/輕質/長壽命特種儲能器件及關鍵材料研製等科學問題,開展(1)多電子高比能二次電池新體系及關鍵材料;(2)新型離子液體及功能複合電解質材料;(3)特種功能電源/薄膜電池及異構納米材料;(4)綠色二次電池資源化再生利用等研究工作 [5] 

陳人傑科研成果

多電子高比能鋰硫二次電池 多電子高比能鋰硫二次電池
作為負責人,承擔了國家自然科學基金委項目、科技部重點研發計劃項目、863計劃項目和國際科技合作項目、中央在京高校重大成果轉化項目、北京市重大科技項目等課題。基於多電子理論研製了高載硫高導電多維穩定複合電極,設計了輕質功能修飾隔膜/夾層,發明了高安全功能複合電解質材料並構築了3D納米陣列修飾改性鋰負極,研製出能量密度從300Wh/kg到600Wh/kg不同規格和性能特徵的鋰硫電池樣品,先後在高容量通信裝備、無人機、機器人、新能源汽車等方面開展應用。
自主合成酰胺類、咪唑啉酮類新型離子液體和亞硫酸酯類、異氰酸酯類、碸類多元複合溶劑及硼基鋰鹽、原位自組裝的新型複合固態電解質等多種功能電解質材料,應用於鋰二次電池體系有效提高了其安全性和寬温度應用特性。
集成磁控濺射、離子蒸鍍等多種技術手段,研製了具有納米粒子生長及微米厚度設計等特徵的新型晶態欠鋰薄膜電極和交聯網絡結構的薄膜電解質材料,製備了不同外形特徵的薄膜器件和特種結構電源 [3-5] 
在Chemical Reviews、Chemical Society Reviews [6]  、Advanced Materials [7]  、Nature Communications、Angewandte Chemie-International Edition、Energy & Environmental Science、Advanced Energy Materials、Advanced Functional Materials、Advanced Science、ACS Nano、Nano Letters、Nano Energy、Materials Horizons、Energy Storage Materials、Science Bulletin、Journal of Energy Chemistry、《中國科學:化學》、《化學進展》、《物理化學學報》等期刊發表SCI收錄論文200餘篇 [8]  ;申請發明專利96項,獲授權42項;開發出電池材料基因組數據平台,獲批軟件著作權10項;出版學術專著2部(《先進電池功能電解質材料》科學出版社2020年出版;《多電子高比能鋰硫二次電池》科學出版社2020年出版) [10] 
先進電池功能電解質材料 先進電池功能電解質材料
獲得國家技術發明二等獎1項、部級科學技術一等獎4項。教育部新世紀人才(2009),北京市人才(2010)、北京市科技新星(2010) [9]  ,中國工程前沿傑出青年學者(2018),英國皇家化學學會會士(2020), [3]  [5]  教育部長江學者特聘教授和科睿唯安2020“全球高被引科學家” [10]  ,北京高等學校卓越青年科學家 [10] 

陳人傑發表論文

1. Lithium Induced Nano-Sized Copper with Exposed Lithiophilic Surfaces to Achieve Dense Lithium Deposition for Lithium Metal Anode. Qian Ji, Wang Shuo, Li Yu, Zhang Menglu, Wang Fujie, Zhao Yuanyuan, Sun Qiang, Li Li, Wu Feng, Chen Renjie*, Advanced Functional Materials, 2020, 2006950. [11] 
2. An “Ether-In-Water” Electrolyte Boosts Stable Interfacial Chemistry for Aqueous Lithium-Ion Batteries. Shang Yanxin, Chen Nan,* Li Yuejiao,* Chen Shi, Lai Jingning, Huang Yongxin, Qu Wenjie, Wu Feng, Chen Renjie*, Advanced Materials, 2020, 2004017. [12] 
3. Electrocatalytic interlayer with fast lithium-polysulfides diffusion for lithium–sulfur batteries to enhance electrochemical kinetics under lean electrolyte conditions. Qian Ji, Wang Fujie, Li Yu, Wang Shuo, Zhao Yuanyuan, Li Wanlong, Xing Yi, Deng Lei, Sun Qiang, Li Li, Wu Feng, and Chen Renjie*, Advanced Functional Materials, 2020, 30, 2000742. [13] 
4. Toward rapid-charging sodium-Ion batteries using hybrid-phase molybdenum sulfide selenide-based anodes. Huang Yongxin, Wang Ziheng, Guan Minrong, Wu Feng, Chen Renjie*, Advanced Materials, 2020, 2003534. [14] 
5. Thermodynamic analysis and kinetic optimization of highenergy batteries based on the multi-electron reactions. Huang Yongxin, Wu Feng, Chen Renjie*, National Science Review, 2020, 7, 1367-1386. [15] 
6. High Efficiency CoSe Electrocatalyst with Hierarchical Porous Polyhedron Nanoarchitecture for Accelerating Polysulfides Conversion in Li–S Batteries. Ye Zhengqing, Jiang Ying, Li Li, Wu Feng, Chen Renjie*, Advanced Materials, 2020, 2002168. [16] 
7. A Leaf-like Al2O3-based Quasi-Solid Electrolyte with a Fast Li+ Conductive Interface for Stable Lithium Metal Anodes. Wen Ziyue, Li Yuejiao*, Zhao Zhikun, Qu Wenjie*, Chen Nan, Xing Yi, Ma Yue, Li Li, Wu Feng, Chen Renjie*, Journal of Materials Chemistry A. 2020, 8, 7280-7287. [17] 
8. Curbing polysulfide shuttling by synergistic engineering layer composed of supported Sn4P3 nanodots electrocatalyst in lithium-sulfur batteries. Ye Zhengqing, Jiang Ying, Feng Tao, Wang Ziheng, Li Li, Wu Feng, Chen Renjie*, Nano Energy, 2020, 70, 104532. [18] 
9. Electrolytes for rechargeable lithium–air batteries. Lai Jingning, Xing Yi, Chen Nan, Li Li, Feng Wu, Chen Renjie*, Angewandte Chemie-International Edition, 2020, 59, 2974-2997. [19] 
10. Long-life lithium-O2 battery achieved by integrating quasi-solid electrolyte and highly active Pt3Co nanowires catalyst. Xing Yi, Chen Nan, Luo Mingchuan, Sun Yingjun, Yang Yong, Qian Ji, Li Li, Guo Shaojun*, Chen Renjie*, Wu Feng, Energy Storage Materials, 2020, 24, 707-713. [20] 
11. Reduced graphene oxide aerogel as stable host for dendrite-free sodium metal anode. Wu Feng, Zhou Jiahui, Luo Rui, Huang Yongxin, Mei Yang, Xie Man*, Chen Renjie*, Energy Storage Materials, 2019, 22, 376-383. [21] 
12. Exceptional adsorption and catalysis effects of hollow polyhedra/carbon nanotube confined CoP nanoparticles superstructures for enhanced lithium-sulfur batteries. Ye Zhengqing, Jiang Ying, Qian Ji, Li Wanlong, Feng Tao, Li Li, Wu Feng, Chen Renjie*, Nano Energy, 2019, 64, 103965. [22] 
13. A Li+ conductive metal organic framework electrolyte boosts the high-temperature performance of dendrite-free lithium batteries. Chen Nan, Li Yuejiao, Dai Yujuan, Qu Wenjie, Xing Yi, Ye Yusheng, Wen Ziyue, Guo Cui, Wu Feng, Chen Renjie*, Journal of Materials Chemistry A, 2019, 7, 9530-9536. [23] 
14. Boosting high-rate Li-S batteries by a MOFs-derived catalytic electrode with a layered-by-layered structure. Li Wanlong, Qian Ji, Zhao Teng, Ye Yusheng, Xing Yi, Huang Yongxin, Wei Lei, Zhang Nanxiang, Chen Nan, Li Li, Wu Feng, Chen Renjie*, Advanced Science, 2019, 1802362. [24] 
15. Protecting lithium/sodium metal anode with metal-organic framework based compact and robust shield. Qian Ji, Li Yu, Zhang Menglu, Luo Rui, Wang Fujie, Ye Yusheng, Xing Yi, Li Wanlong, Qu Wenjie, Wang Lili, Li Li, Li Yuejiao, Wu Feng, Chen Renjie*, Nano Energy, 2019, 60, 866-874. [25] 
16. All-iron sodium-ion full-cells assembled via stable porous goethite nanorods with low strain and fast kinetics. Huang Yongxin, Xie Man, Wang Ziheng, Jiang Ying, Huang Qianming, Bai Xuedong, Li Li, Wu Feng, Chen Renjie*, Nano Energy, 2019, 60, 294-304. [26] 
17. Electrolytes and Electrolyte/Electrode Interfaces in Sodium-ion Batteries: From Scientific Research to Practical Application. Huang Yongxin, Zhao Luzi, Li Li, Xie Man, Chen Renjie*, Advanced Materials, 2019, 31, 1808393. [27] 
18. Anode Interface Engineering and Architecture Design for High-Performance Lithium-Sulfur Batteries. Zhao Yuanyuan, Ye Yusheng, Wu Feng, Li Yuejiao, Li Li, Chen Renjie*, Advanced Materials, 2019, 1806532. [28] 
19. A 3D flower-like VO2/MXene hybrid architecture with superior anode performance for sodium ion batteries. Wu Feng, Jiang Ying, Ye Zhengqing, Huang Yongxin, Wang Ziheng, Li Shuaijie, Mei Yang, Xie Man, Li Li, Chen Renjie*, Journal of Materials Chemistry A, 2019, 7(3), 1315-1322. [29] 
20. Crumpled Ir Nanosheets Fully Covered on Porous Carbon Nanofibers for Long-Life Rechargeable Lithium-CO2 Batteries. Xing Yi, Yang Yong, Li Daohao, Luo Mingchuan, Chen Nan, Ye Yusheng, Qian Ji, Li Li, Yang Dongjiang, Wu Feng, Chen Renjie*, Guo Shaojun*, Advanced Materials, 2018, 30(51), 1803124. [30] 
21. Hierarchical porous Co0.85Se@reduced graphene oxide ultrathin nanosheets with vacancy-enhanced kinetics as superior anodes for sodium-ion batteries. Huang Yongxin, Wang Ziheng, Jiang Ying, Li Shuaijie, Li Zehua, Zhang Haiqin, Wu Feng, Xie Man, Li Li, Chen Renjie*, Nano Energy, 2018, 53, 524-535. [31] 
22. Conductivity and Pseudocapacitance Optimization of Bimetallic Antimony-Indium Sulfide Anodes for Sodium-Ion Batteries with Favorable Kinetics. Huang Yongxin, Wang Ziheng, Jiang Ying, Li Shuaijie, Wang, Min, Ye Yusheng, Wu Feng, Xie Man, Li Li, Chen Renjie*, Advanced Science, 2018, 5, 1800613. [32] 
23. Toward sustainable and systematic recycling of spent rechargeable batteries. Zhang Xiaoxiao, Li Li, Fan Ersha, Xue Qing, Bian Yifan, Wu Feng, Chen Renjie*, Chemical Society reviews, 2018, 47, 7239-7302. [33] 
24. Ionogel Electrolytes for High-Performance Lithium Batteries: A Review. Chen Nan, Zhang Haiqin, Li Li, Chen Renjie*, Guo Shaojun*, Advanced Energy Materials, 2018, 1702675. [34] 
25. Development and Challenges of Functional Electrolytes for High-Performance Lithium-Sulfur Batteries. Wang Lili, Ye Yusheng, Chen Nan, Huang Yongxin, Li Li, Wu Feng, Chen Renjie*, Advanced Functional Materials, 2018, 1800919. [35] 
26. Boosting Fast Sodium Storage of a Large-Scalable Carbon Anode with an Ultralong Cycle Life. Qian Ji, Wu Feng, Ye Yusheng, Zhang Menglu, Huang Yongxin, Xing Yi, Qu Wei, Li Li, and Chen Renjie*, Advanced Energy Materials, 2018, 8, 1703159. [36] 
27. Fast sodium storage kinetics of lantern-like Ti0.25Sn0.75S2 connected via carbon nanotubes. Huang Yongxin, Xie Man, Wang Ziheng, Jiang Ying, Xiao Genhua, Li Shuaijie, Li Li, Wu Feng, Chen Renjie*, Energy Storage Materials, 2018, 11, 100-111. [37] 
28. Toward Practical High-Energy Batteries: A Modular-Assembled Oval-Like Carbon Microstructure for Thick Sulfur Electrodes. Ye Yusheng, Wu Feng, Liu Yuting, Zhao Teng, Qian Ji, Xing Yi, Li Wanlong, Huang Jiaqi, Li Li, Huang Qianming, Bai Xuedong, Chen Renjie*, Advanced Materials. 2017, 29, 1700598. [38] 
29. Zirconia-supported solid-state electrolytes for high-safety lithium secondary batteries in a wide temperature range. Chen Renjie,* Qu Wenjie, Qian Ji, Chen Nan, Dai Yujuan, Guo Cui, Huang Yongxin, Li Li, Wu Feng, Journal of Materials Chemistry A, 2017, 5, 24677-24685. [39] 
30. A modularly-assembled interlayer to entrap polysulfides and protect lithium metal anode for high areal capacity lithium–sulfur batteries. Ye Yusheng, Wang Lili, Guan Lili, Wu Feng, Qian Ji, Zhao Teng, Zhang Xiaoxiao, Xing Yi, Shi Jiaqing, Li Li, Chen Renjie*, Energy Storage Materials, 2017, 9, 126-133. [40] 
31. A novel border-rich Prussian blue synthetized by inhibitor control as cathode for sodium ion batteries. Huang Yongxin, Xie Man, Zhang Jiatao, Wang Ziheng, Jiang Ying, Xiao Genhua, Liang Shuaijie, Li Li, Wu Feng, Chen Renjie*, Nano Energy, 2017, 39, 273-283. [41] 
32. Micrometer-Sized RuO2 Catalysts Contributing to Formation of Amorphous Na-Deficient Sodium Peroxide in Na–O2 Batteries. Wu Feng, Xing Yi, Lai Jingning, Zhang Xiaoxiao, Ye Yusheng, Qian Ji, Li Li, Chen Renjie*, Advanced Functional Materials, 2017, 27, 1700632. [42] 
33. Biomimetic Ant-nest Ionogel Electrolyte Boosts the Performance of Dendrite-free Lithium Batteries. Chen Nan, Dai Yujuan, Xing Yi, Wang Lili, Guo Cui, Chen Renjie∗, Guo Shaojun∗, Wu Feng, Energy & Environmental Science, 2017, 10, 1660-1667. [43] 
34. Sulfur Nanodots Stitched in 2D “Bubble-Like”Interconnected Carbon Fabric as Reversibility-Enhanced Cathodes for Lithium−Sulfur Batteries. Wu Feng, Ye Yusheng, Huang Jiaqi, Zhao Teng, Qian Ji, Zhao Yuanyuan, Li Li, Wei Lei, Luo Rui, Huang Yongxin, Xing Yi, Chen Renjie*, ACS Nano, 2017, 11, 4694-4702. [44] 
35. Gluing Carbon Black and Sulfur at Nanoscale:A Polydopamine-Based “Nano-Binder” for Double-Shelled Sulfur Cathodes. Wu Feng, Ye Yusheng, Chen Renjie*, Zhao Teng, Qian Ji, Zhang Xiaoxiao, Li Li, Huang Qianming, Bai Xuedong, Cui Yi*, Advanced Energy Materials, 2017, 7, 1601591. [45] 
36. Organically modified silica-supported ionogels electrolyte for high temperature lithium-ion batteries. Wu Feng, Chen Nan, Chen Renjie*, Wang Lili, Li Li, Nano Energy, 2017, 31, 9-18. [46] 
37. Advanced Lithium–Sulfur Batteries Enabled by a Bio-Inspired Polysulfide Adsorptive Brush. Zhao Teng, Ye Yusheng, Peng Xiaoyu, Divitini Giorgio, Kim Hyun-Kyung, Lao Cheng-Yen, Coxon Paul R., Xi Kai, Liu Yingjun, Ducati Caterina, Chen Renjie*, Kumar R. Vasant*, Advanced Functional Materials, 2016, 26, 8418-8426. [47] 
38. Platinum-Coated Hollow Graphene Nanocages as Cathode Used in Lithium-Oxygen Batteries. Wu Feng, Xing Yi, Zeng Xiaoqiao, Yuan Yifei, Zhang Xiaoyi, Reza Shahbazian-Yassar, Wen Jianguo, Miller Dean J., Li Li, Chen Renjie*, Lu Jun*, Amine Khalil, Advanced Functional Materials, 2016, 26, 7626–7633. [48] 
39. The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons. Chen Renjie*, Qu Wenjie, Guo Xing, Li Li, Wu Feng, Materials Horizons, 2016, 3: 487-516. [49] 
40. Advanced High Energy Density Secondary Batteries with Multi-Electron Reaction Materials. Chen Renjie*, Luo Rui, Huang Yongxin, Wu Feng*, Li Li. Advanced Science. 2016, 3, 1600051. [50] 
41. Freestanding three-dimensional core-shell nanoarrays for lithium-ion battery anodes. Tan Guoqiang, Wu Feng*, Yuan Yifei, Chen Renjie*, Zhao Teng, Yao Ying, Qian Ji, Liu Jianrui, Ye Yusheng, Shahbazian-Yassar Reza, Lu Jun* and Amine Khalil, Nature Communications.2016, 7:11774. [51] 
42. Self-Regulative Nanogelator Solid Electrolyte: A New Option to Improve the Safety of Lithium Battery. Wu Feng, Chen Nan, Chen Renjie*, Zhu Qizhen, Tan Guoqiang, Li Li. Advanced Science. 2016, 3(1), 1500306. [52] 
43. Systematic Effect for an Ultra long Cycle Lithium-Sulfur Battery. Wu Feng, Ye Yusheng, Chen Renjie*, Qian Ji, Zhao Teng, Li Li, Li Wenhui, Nano Letters.2015,15(11): 7431-7439. [53] 
44. Ionic liquid electrolytes with protective lithium difluoro(oxalate)borate for high voltage lithium-ion batteries. Wu Feng, Zhu Qizhen, Chen Renjie*, Chen Nan, Chen Yan, Li Li, Nano Energy. 2015, 13, 546-553. [54] 
45. Novel Solid-State Li/LiFePO4 Battery Configuration with a Ternary Nanocomposite Electrolyte for Practical Applications. Wu Feng, Tan Guoqiang, Chen Renjie*, Li Li*, Xiang Jin, Zheng Yuelei. Advanced Materials, 2011, 23: 5081-5085. [55] 
參考資料
展開全部 收起