複製鏈接
請複製以下鏈接發送給好友

間隙固溶體

鎖定
工業上使用的金屬材料,絕大部分是以固溶體為基體.有的甚至完全由固溶體組成。如碳鋼和合金鋼.均以固溶體為基體相,其含量佔組織中的絕大部分。
間隙固溶體是指溶質原子不是佔據溶劑晶格的正常結點位置,而是填入溶劑原子間的一些間隙中。 [1] 
中文名
間隙固溶體
外文名
interstitial solid solution
別    名
插入固溶體
別    名
嵌入固溶體
形    態
固溶體
位    置
溶質原子佔據晶格中的間隙
形成條件
添加的原子愈小,易形成固溶體

間隙固溶體簡介

若溶質原子比較小,它們能進入溶劑晶格的問隙位置內,這樣形成的固溶體稱為間隙固溶體,其結構如下圖1所示,小黑球代表溶質原子,白球代表溶劑原子。
圖1 間隙固溶體的結構 圖1 間隙固溶體的結構
間隙固溶體的溶解度不僅與溶質原子的大小有關,而且與溶劑晶體結構中所形成間隙的形狀和大小也有關係。常見的間隙固溶體有下列幾種。
①原子填隙
金屬晶體中,原子半徑較小H、C、B元素容易進入晶格間隙中形成間隙固溶體,如碳在鐵中形成的間隙固溶體。
②陽離子填隙
當CaO加入ZrO2中,當CaO加入量小於0.15時,在180℃發生下列反應:
③陰離子填隙
將YF3加入到CaF2中,形成固溶體,其反應為: [2] 

間隙固溶體固溶體的微觀參數

從宏觀的角度看,處於熱力學平衡的固溶體可以看成溶質原子分佈是完全無序、均勻的,但是當把尺度縮小到原子尺度範圍看時,固溶體中的溶質原子不會完全無序分佈。事實上,在微觀角度溶質原子是不均勻分佈的,溶質原子往往傾向於短程有序排列或形成同類原子的團簇。下圖2a所示為原子的團簇,下圖2b所示為異類原子的短程有序。不論是團簇或是短程有序,這些分佈的小集團是隨着時間和空間的起伏而變化的,即是時聚時散的。異類原子可以部分有序或完全有序分佈。完全有序的固溶體或稱為超結構。因為完全有序時各類原子處在各自的亞點陣位置,與化合物相似,所以也有人把這類固溶體看做是化合物。
圖2 固溶體中溶質的微觀不均勻分佈 圖2 固溶體中溶質的微觀不均勻分佈
為了描述固溶體的微觀不均勻性,引入短程序參數α。若A、B形成固溶體,xA是A組元的摩爾分數,PA是在B原子周圍存在A原子的幾率,定義α為: [3] 
形成固溶體後,它的性能與組成它的組元的性能有很大的不同,這歸因於溶質引起溶劑結構的變化。前面已經討論到溶質原子溶入後引起基體的彈性畸變,從而也改變固溶體的點陣常數。最簡單的看法是:固溶體的點陣常數隨成分變化遵循費伽(Vegard)定律,即固溶體的點陣常數隨組成固溶體組元點陣常數呈直線變化。雖然這一規律僅在很多離子鹽晶體是合適的,但它在金屬體系卻並不完全符合。由於溶質原子和溶劑原子尺寸不同,當一個溶質原子取代了溶劑原子在晶體結構中的位置後,必然會使晶格發生畸變,即在溶質原子周圍產生晶格的彈性應變。溶質原子所引起的點陣畸變並不限於其鄰近局部地區,而會波及相當遠的區域。溶質原子加入後,使固溶體的點陣常數(原子間距)變化。下圖給出了固溶體偏離費伽定律的示意圖。事實上,由於溶劑與溶質組元的交互作用,點陣常數對費伽定律的偏離有可能出現正偏差也可能出現負偏差。
固溶體點陣最近距離d隨成分變化(虛線表示費伽定律) 固溶體點陣最近距離d隨成分變化(虛線表示費伽定律)

間隙固溶體影響形成間隙固溶體的因素

間隙固溶體的固溶度仍然取決於離子尺寸、離子價、電負性、結構等因素。
①雜質質點大小 添加的原子愈小,愈易形成間隙固溶體,反之亦然。
②晶體(基質)結構 離子尺寸是與晶體結構的關係密切相關的,在一定程度上來説,結構中間隙的大小起了決定性的作用。基質晶體中空隙愈大,結構愈疏鬆,愈易形成間隙固溶體。
③電價因素外來雜質原子進人問隙時,必然引起晶體結構中電價的不平衡,和置換型固溶體一樣,也必須保持電價的平衡。這可以通過生成空位、產生部分取代或離子的價態變化來達到。 [2] 

間隙固溶體形成固溶體後對晶體性質的影響

①穩定晶格,阻止某些晶型轉變的發生 ZrO2是一種高温耐火材料,熔點2680℃,但從單斜轉變到四方時,伴隨很大的體積收縮,這對高温結構材料是致命的。若加入CaO,則它和ZrO2形成固溶體,無晶型轉變,使體積效應減少,使ZrO2成為一種很好的高温結構材料。
②活化晶格 形成固溶體後,晶格結構有一定畸變,處於高能量的活化狀態,有利於進行化學反應。如,AI2O3熔點高(2050℃),不利於燒結,若加入TiO2,可使燒結温度下降到1600℃,這是因為AI2O3與TiO2形成固溶體,Ti4+置換Al3+後,
帶正電,為平衡電價,產生正離子空位,加快擴散,有利於燒結進行。
③固溶強化 固溶體的強度與硬度往往高於各組元,而塑性則較低,這種現象稱為固溶強化。強化的程度(或效果)不僅取決於它的成分,還取決於固溶體的類型、結構特點、固溶度、組元原子半徑差等一系列因素。
固溶強化在實驗中經常見到,如鉑、銠單獨做熱電偶材料使用,熔點為1450℃,而將鉑銠合金做其中的一根熱電偶,鉑做另一根熱電偶,熔點為1700℃,若兩根熱電偶都用鉑銠合金而只是鉑銠比例不同,熔點達2000℃以上。
④形成固溶體後對材料物理性質的影響 固溶體的電學、熱學、磁學等物理性質也隨成分而連續變化,但一般都不是線性關係。固溶體的強度與硬度往往高於各組元,而塑性則較低。 [2] 
參考資料
  • 1.    周岐,王亞君,武曉峯編著.電焊工1000個怎麼辦:中國電力出版社,2014.05
  • 2.    謝峻林主編.無機非金屬材料工學:化學工業出版社,2011.07
  • 3.    餘永寧編著.金屬學原理:冶金工業出版社,2013.10