複製鏈接
請複製以下鏈接發送給好友

賀永

(浙江大學機械工程學院教授)

鎖定
本詞條內容由智慧樹認證並提供
賀永,國家傑出青年基金及優秀青年科學基金獲得者,青年長江學者,現任浙江大學機械工程學院教授,博士生導師,流體動力與機電系統國家重點實驗室副主任,Bio-Design Manufacturing 期刊副主編、Biofabrication、Engineered Regeneration期刊編委,互聯網+大學生創新創業大賽國賽金獎指導教師。從事增材製造(3D打印)、生物製造等方面的研究工作,主持傑青、基金重點、聯合基金重點等國家自然科學基金6項,重點研發計劃、國家支撐計劃、國家數控重大專項課題及省部級課題多項,基金委創新羣體項目“運動系統組織工程與再生研究”核心成員,出版生物3D打印專著2本,專著章節5章,授權發明專利50餘件(其中9件已轉化到企業形成產品),在Science Translational Medicine, Science Advances, Nature Communcations等期刊發表SCI論文100餘篇,H因子53,論文被引 9200餘次。擔任機械工程學會生物製造分會常務委員、國家醫用增材製造標準委員會設備組牽頭人、創建EFL品牌(Engineering for Life),致力於醫工交叉研究及成果轉化。 [1] 
中文名
賀永
畢業院校
中國礦業大學 浙江大學
職    業
教育科研工作者
主要成就
國家優秀青年、浙江省傑出青年 [1] 
職    稱
教授

賀永人物經歷

2016.12- 教授,博士生導師
2010.12-2016.12浙江大學,製造工程及自動化研究所, 副教授
2010.03-2010.11 浙江大學,現代製造工程研究所, 講師
2008.04-2010.03 浙江大學,力學博士後流動站, 博士後
2001.09-2007.12 浙江大學,機械製造及其自動化, 博士
1997.09-2001.07 中國礦業大學,工程力學, 學士 [1] 

賀永主要成就

賀永科研成就

從事增材製造(3D打印)、生物製造等方面的研究工作,主持國家優青、聯合基金重點等國家自然科學基金4項,重點研發計劃(變革性項目)子課題、國家支撐計劃子課題、國家數控重大專項子課題各一項,省部級課題多項,出版生物3D打印專著1本,專著章節4章,授權發明專利50餘件(其中9件已轉化到企業形成產品),在包括《Advanced Functional Materials》、《Materials Horizons》、《Biomaterials》、《Small》、《Biofabrication》、《ACS Applied Materials & Interface》等生物製造領域的頂級期刊發表SCI論文80餘篇,H因子32,論文被引3000餘次。 [1] 
學術專著
1. 生物3D打印:從醫療輔具製造到細胞打印, 華中科技大學出版社,365千字,2019,賀永,傅建中,高慶著
2. 生物3D打印與再生醫學,華中科技大學出版社,第二章生物3D打印原理及應用,100千字,賀永
3. 全國高等學校醫學專業研究生國家級規劃教材, 第十九章生物3D打印技術的臨牀應用 ,80千字,賀永
4. 3D bioprinting for reconstructive surgery, Chapter 2, Elisver, 2017,Yong He [2] 
發表論文
* Corresponding author [1] 
78. Lv S, Nie J, .. He Y*. Micro/nanofabrication of brittlehydrogels using 3D printed soft ultrafine fiber molds for damage-freedemolding. Biofabrication. 2020,12(2):025015
77. Xie M, Gao Q, .. He Y*. Bioprinting of novel 3D tumorarray chip for drug screening. Bio-Designand Manufacturing. 2020
76. Zhou L, Fu J, .. He Y*. A Review of 3D PrintingTechnologies for Soft Polymer Materials. AdvancedFunctional Materials. 2020:2000187
75. Shao L, Gao Q, .. He Y*,Xiang M, He Y. Directly coaxial 3D bioprinting of large-scale vascularizedtissue constructs. Biofabrication.2020, 12(3):035014
74. Nie J, Gao Q, Fu J, .. HeY*. Grafting of 3D Bioprinting to In Vitro Drug Screening: A Review. Advanced Healthcare Materials. 2020, 9(7),1901773
73. Zhou L, Ye J, .. He Y*. 4D Printing of High-PerformanceThermal-Responsive Liquid Metal Elastomers Driven by Embedded MicroliquidChambers. ACS Applied Materials &Interfaces. 2020,12(10):12068-74
72. Shao L, Gao Q, .. He Y*. Sacrificial microgel-ladenbioink-enabled 3D bioprinting of mesoscale pore networks. Bio-Design and Manufacturing. 2020, 3(1):30-9
71. Gu Z, Fu J, Lin H, He Y*.Development of 3D bioprinting: From printing methods to biomedicalapplications. Asian Journal ofPharmaceutical Sciences. 2019.
70. Shao L, Gao Q, .. He Y*. Synchronous 3D Bioprinting ofLarge-Scale Cell-Laden Constructs with Nutrient Networks. Advanced healthcare materials. 2020, 1901142
69. Xie M, Yu K, .. He Y*. Protocols of 3D Bioprinting ofGelatin Methacryloyl Hydrogel Based Bioinks. Journal of Visualized Experiments, 2019, 154,e60545.
68. He Y*, Xie M, Gao Q, Fu J. Why choose3D bioprinting? Part I: a brief introduction of 3D bioprinting for thebeginners. Bio-Design and Manufacturing.2019, 2(4):221-224.
He Y*, Gu Z, XieM, Fu J, Lin H. Why choose 3D bioprinting? Part II: methods and bioprinters. Bio-Design and Manufacturing. 2020, 3(1):1-4.(系列生物3D打印的Editorials)
67. Zhou L, Fu J, .. He Y*. All‐PrintedFlexible and Stretchable Electronics with Pressing or Freezing ActivatableLiquid‐Metal–Silicone Inks. Advanced FunctionalMaterials. 2020,30(3):1906683
66. Gao Q, Xie C, .. He Y*.3D printed multi-scale scaffolds with ultrafine fibers for providing excellentbiocompatibility. Materials Science& Engineering C. 2020, 107:110269.
65. Nie J, Gao Q, … He Y*. Construction of multi-scalevascular chips and modelling of the interaction between tumours and bloodvessels, Materials Horizons, 2020, 7(1):82-92 (Cover)
64. Xie M, Gao Q, … He Y*.3D biofabrication of microfiber-laden minispheroids: a facile 3D cellco-culturing system. Biomaterialsscience. 2019, 8(1):109.
63. Zhou L, Gao Q, .. He Y*. Multimaterial 3D Printing of HighlyStretchable Silicone Elastomers[J]. ACSApplied Materials & Interfaces, 2019, 11(26):23573-83
62. YildirimerL, Zhang Q, Kuang S, et al. Engineering three-dimensional microenvironmentstowards in vitro disease models of the central nervous system[J]. Biofabrication, 2019, 11(3):032003.
61. GaoQ, Niu X, Shao L , He Y*. 3Dprinting of complex GelMA-based scaffolds with nanoclay[J]. Biofabrication, 2019, 11(3):035006..
60. GaoQ, Zhao P, Zhou R, He Y*. Rapidassembling organ prototypes with controllable cell-laden multi-scale sheets[J].Bio-Design and Manufacturing, 2019,2(1): 1-9.
59. ShaoL, Gao Q, Xie C, He Y*. Bioprintingof Cell‐Laden Microfiber: Can It Become a Standard Product?[J]. Advanced healthcare materials, 2019:1900014.
58. Xie M, Gao Q, ZhaoH, He Y*. Electro‐AssistedBioprinting of Low‐Concentration GelMA Microdroplets[J]. Small, 2019, 15(4): 1804216.
57. Xie C, Gao Q, WangP, .. He Y*. Structure-induced cellgrowth by 3D printing of heterogeneous scaffolds with ultrafine fibers[J]. Materials & Design, 2019: 108092.
56. Yang N, Chen H, HanH, He Y*. 3D printing and coating tofabricate a hollow bullet-shaped implant with porous surface for controlledcytoxan release[J]. Internationaljournal of pharmaceutics, 2018, 552(1-2): 91-98.
55. ShaoL, Gao Q, Zhao H, He Y*. Fiber‐based minitissue with morphology‐controllable GelMA microfibers[J]. Small,2018, 14(44): 1802187.
54. Zhao P, Cao M, GuH, et al. Research on the electrospun foaming process to fabricate three‐dimensionaltissue engineering scaffolds[J]. Journalof Applied Polymer Science, 2018, 135(46): 46898.
53. ZhaoH, Chen Y, Shao L, He Y*. Airflow‐Assisted 3DBioprinting of Human Heterogeneous Microspheroidal Organoids with MicrofluidicNozzle[J]. Small, 2018: 1802630 (Cover).
52. GaoQ, Gu H, Zhao P, He Y*. Fabricationof electrospun nanofibrous scaffolds with 3D controllable geometric shapes[J]. Materials & Design, 2018, 157:159-169.
51. Zhou L, Gao Q, … He Y*, 3D Printed Wearable Sensors with Liquid Metals for thePose Detection of Snakelike Soft Robots, ACS Applied Materials & Interfaces, 2018, 10(27): 23208-23217.
50. Nie J, Gao Q, … He Y*, 3DPrinted Lego-like Modular Microfluidic Devices Based on Capillary Driving, Biofabrication, 2018, 10(3):035001.
49. Zhao H, He Y*, Fu, J. Inclined layer printingfor fused deposition modeling without assisted supporting structure[J]. Robotics and Computer–IntegratedManufacturing, 2018, 51:1-13.
48. Nie J, Gao Q, WangY, He Y*. Vessel‐on‐a‐chip withHydrogel‐based Microfluidics[J]. Small, 2018, 14(45): 1802368.
47. Shao H, Sun M, .. He Y*. Custom Repair of Mandibular Bone Defects with3D Printed Bioceramic Scaffolds[J]. Journal of Dental Research, 2018, 97(1):68-76.
46. Zhao H, Yang F, Fu,J, He Y*. Printing@Clinic FromMedical Models to Organ Implants[J]. ACSBiomaterials Science & Engineering, 2017, 3(12):3083-97.
45. Shao H, Liu A, .. He Y*,... 3D robocastingmagnesium-doped wollastonite/TCP bioceramic scaffolds with improved bone regenerationcapacity in critical sized calvarial defects[J]. Journal of Materials Chemistry B, 2017, 5(16):2941-51.
44. Jin Y, Du J, Ma Z, He, Y. An optimization approach forpath planning of high-quality and uniform additive manufacturing[J]. International Journal of AdvancedManufacturing Technology, 2017, 92(1):651-62
43. Wu Y, Gao Q,… He Y*. From microfluidic paper-basedanalytical devices to paper-based biofluidics with integrated continuousperfusion[J]. ACS Biomaterials Science& Engineering, 2017, 3(4):601-7.
42. Shao H, Ke X, .. He Y*,... Bone regeneration in 3Dprinting bioactive ceramic scaffolds with improved tissue material interfacepore architecture in thin-wall bone defect[J]. Biofabrication, 9 (2017) 025003.
41 Qiu J, Gao Q, .. He Y*. Rapid Customization of 3D Integrated MicrofluidicChips via Modular Structure-Based Design[J]. ACS Biomaterials Science & Engineering, 2017, 3(10):2606-16.
40. Liu Y, Gao Q, Du S,He Y*. Fabrication of cerebralaneurysm simulator with a desktop 3D printer[J]. Scientific Reports, 2017: 44301.
39. Gao Q, Liu Z, He Y*. 3D Bioprinting of Vessel-likeStructures with Multi-level Fluidic Channels[J]. ACS Biomaterials Science & Engineering, 2017, DOI:10.1021/acsbiomaterials.6b00643.
38. Yao X H, Jia T,… He Y*. Facial fabrication ofpaper-based flexible electronics with flash foam stamp lithography[J]. Microsystem Technologies, 2016: 1-8.
37. SunM, Liu A, Shao H, He Y*, et al.Systematical Evaluation of Mechanically Strong 3D Printed Diluted magnesiumDoping Wollastonite Scaffolds on Osteogenic Capacity in Rabbit CalvarialDefects[J]. Scientific Reports,2016, 34029.
36. He Y*, Yang F, Zhao H, et al. Researchon the printability of hydrogels in 3D bioprinting.[J]. Scientific Reports, 2016, 29977.
35. He Y*,Gao Q, Wu W, et al. 3D Printed Paper-Based Microfluidic Analytical Devices[J]. Micromachines, 2016, 7(7), 108.
34. Liu A, Sun M, ShaoH, He Y*, et al. The outstandingmechanical response and bone regeneration capacity of robocast dilutemagnesium-doped wollastonite scaffolds in critical size bone defects[J]. Journal of Materials Chemistry B, 2016,4(22): 3945-3958.
33. He Y*,Wu Y, Fu J, et al. Developments of 3D Printing Microfluidics and Applicationsin Chemistry and Biology: a Review[J]. Electroanalysis,2016, 28, 1658 – 1678.
32. LiuA, Xue G, Sun M,.. He Y*. 3DPrinting Surgical Implants at the clinic: A Experimental Study on AnteriorCruciate Ligament Reconstruction[J]. Scientificreports, 2016, 6: 21704.
31. Shao H, He Y*, Fu J, et al. 3D printingmagnesium-doped wollastonite/β-TCP bioceramics scaffolds with high strength andadjustable degradation[J]. Journal ofthe European Ceramic Society, 2016, 36:1495–1503.
30. Xie J, Shao H, HeD, He Y, et al. Ultrahigh strengthof three-dimensional printed diluted magnesium doping wollastonite porousscaffolds[J]. MRS Communications,2015, 5(04): 631-639.
29. Jin Y, Li H, He Y*, et al. Quantitative analysis ofsurface profile in fused deposition modelling[J]. Additive Manufacturing, 2015, 8: 142-148.
28. Gao Q, He Y*, Fu J, et al. Fabrication ofshape controllable alginate microparticles based on drop-on-demand jetting[J]. Journal of Sol-Gel Science and Technology,2016: 77, 610-619.
27. Xie J, Yang X, ShaoH, He Y, et al. Simultaneousmechanical property and biodegradation improvement of wollastonite bioceramicthrough magnesium dilute doping[J]. Journalof the mechanical behavior of biomedical materials, 2016, 54: 60-71.
26. He Y*, Wu Y, Fu J Z, et al. Fabricationof paper-based microfluidic analysis devices: a review[J]. RSC Advances, 2015, 5(95): 78109-78127.
25. Shao H, Yang X, He Y*, et al. Bioactiveglass-reinforced bioceramic ink writing scaffolds: sintering, microstructureand mechanical behavior[J]. Biofabrication,2015, 7(3): 035010.
24. He Y, Xiao X, Wu Y, et al. A facile andlow-cost micro fabrication material: flash foam[J]. Scientific reports, 2015, 5, 13522
23. Wang Q, Xia Q, WuY, Yong He, et al. 3D‐Printed Atsttrin‐IncorporatedAlginate/Hydroxyapatite Scaffold Promotes Bone Defect Regeneration withTNF/TNFR Signaling Involvement[J]. Advancedhealthcare materials, 2015, 4(11): 1701-1708.
22. Qing Gao, Yong He*, Jian-zhongFu, An Liu, Liang Ma. Coaxial nozzle-assisted 3D bioprinting with built-inmicrochannels for nutrients delivery[J]. Biomaterials,2015, 61, 203-215.
21. Yu-an Jin, Yong He*, Jian-zhongFu, Support generation for additive manufacturing based on sliced data[J].TheInternational Journal of Advanced Manufacturing Technology,10.1007/s00170-015-7190-3
20. Yong He,WenBin Wu, Ting Zhang, JianZhong Fu. Micro structure fabrication with asimplified hot embossing method [J]. Rsc Advances,2015,5(49),39138-39144.
19. Yong He,JingJiang Qiu, JianZhong Fu, Jiong Zhang, YiNa Ren, An Liu. Printing 3Dmicrofluidic chip with a sugar 3D printer [J]. Microfluidics andNanofluidics, 10.1007/s10404-015-1571-7
18. Yong He, WenBing Wu, JianZhongFu. Rapid fabrication of paper-based microfluidic analytical devices withdesktop stereolithography 3D printer [J]. RSC Advances, 2015, 5,2694-2701.
17. Yong He, Guang-huaiXue, Jian-zhong Fu, Fabrication of low cost soft tissue prostheses with thedesktop 3D printer [J]. ScientificReports, 2014, 4: 6973.
16. He Yong, Yan Wu,Xiao Xiao, Fu JianZhong, Xue GuangHuai. A low-cost and rapid microfluidicpaper-based analytical devices fabrication method: Flash Foam Stamp Lithography[J]. RSC Advances, 2014,4(109): 63860-63865.
15. Jin Y, He Y*, Xue G, et al. A parallel-based path generation method forfused deposition modeling [J]. TheInternational Journal of Advanced Manufacturing Technology, 2014:1-11.
14. Jin Y, He Y*, Fu J, et al. Optimization of tool-path generation for materialextrusion-based additive manufacturing technology [J]. Additive Manufacturing, 2014, 1:32-47.
13. Jin Y, He Y*, Gao Q, et al. Droplet deviation modeling and compensation schemeof inkjet printing [J]. TheInternational Journal of Advanced Manufacturing Technology, 2014: 1-11.
12.Yu-an Jin, Yong He*, Jian-zhong Fu, Zhi-wei Lin, Wen-feng Gan. Afine-interpolation-based parametric interpolation method with a novel real-timelook-ahead algorithm [J]. Computer-Aided Design, 2014,55: 37-48.
11. He Y, Fu J Z, Zhao P, etal. Enhanced polymer filling and uniform shrinkage of polymer and mold in a hotembossing process [J]. PolymerEngineering & Science, 2013, 53(6): 1314-1320.
10. Jin Y, He Y*, Fu J. A look-ahead andadaptive speed control algorithm for parametric interpolation [J]. The International Journal ofAdvanced Manufacturing Technology, 2013, 69(9-12): 2613-2620.
9. Jin Y, He Y*, Fu J, et al. Aninterpolation method for the open CNC system based on EPM [J]. The International Journal ofAdvanced Manufacturing Technology, 2013, 69(1-4): 405-416.
8. Peng Zhao, HuaminZhou, Yong He, Kan Cai,Jianzhong Fu. A nondestructiv e online method for monitoring the injectionmolding process by collecting and analyzing machine running data [J]. The International Journalof Advanced Manufacturing Technology, 2014, 72(5-8): 765-777
7. Xu S, Yang X, Chen X,Shao H, He Y et al. Effect of borosilicate glass onthe mechanical and biodegradation properties of 45S5-derived bioactiveglass-ceramics [J]. Journal of Non-CrystallineSolids, 2014, 405: 91-99.
6. Shen H, Fu J, He Y, et al.On-line asynchronous compensation methods for static/quasi-static errorimplemented on CNC machine tools [J]. InternationalJournal of Machine Tools and Manufacture, 2012, 60: 14-26.
5.Lin Z, Fu J, He Y, et al.A robust 2D point-sequence curve offset algorithm with multiple islands forcontour-parallel tool path [J]. Computer-AidedDesign, 2013, 45(3): 657-670.
4. He Y, Fu J Z, ChenZ C. Research on optimization of the hot embossing process [J].Journal ofMicromechanics and Microengineering, 2007, 17(12): 2420.
3. He Y, Fu J Z, Chen Z C.Optimization of control parameters in micro hot embossing [J]. Microsystem Technologies, 2008,14(3): 325-329.
2. Yong He, Jianzhong F,Zichen C. Experimental study on the hot embossing polymer microfluidic chip[J]. Chinese Journal of Mechanical Engineering, 2008, 21(3): 87-89.
1. HeY, Fu J Z, Chen Z C. Analysis of pattern height development in hotembossing process [J]. Microsystemtechnologies, 2009, 15(7): 963-968. [2] 

賀永人才培養

開設課程
1. 3D打印入門網上公開課,“3D打印:從原理到創新應用”
2. 機械工程綜合應用與實踐,本科生必修課
3. 增材製造,研究生選修課
教學成果
MOOC課程“3D打印:從原理到創新應用”入選雙一流高校專業課程TOP100,2020
MOOC課程“3D打印:從原理到創新應用”入選浙江省優秀研究生課程,2019
作為指導教師指導學生獲得機械行業卓越工程師教育聯盟第二屆“恆星杯”畢業設計大賽銅獎,2018
作為指導教師指導學生獲得傑瑞杯第四屆中國研究生石油裝備創新設計大賽一等獎,2017
作為指導教師指導學生華為杯第十二屆中國研究生電子設計競賽華東區一等獎,2017
作為指導教師指導學生獲得浙江省第十四屆挑戰杯特等獎,2015
作為指導教師指導學生獲得首屆浙江省“互聯網+”大學生創新創業大賽暨首屆中國“互聯網+大學生創新創業大賽選拔賽”金獎,2015 [3] 

賀永榮譽表彰

榮獲浙江大學機械工程學院2014-2015學年“我最喜愛的老師
第六屆浙江大學柯元恆實驗獎教金,一等獎,2014
浙江大學2010-2011、2013-2014學年優秀研究生德育導師 [3] 

賀永社會任職

擔任機械工程學會生物製造分會常務委員、國家醫用增材製造標準委員會委員、國家醫療器械技術審評專家諮詢委員會委員、儀器儀表學會精密機械分會委員,創建EFL品牌(Engineering for Life),致力於醫工交叉研究及成果轉化。 [1] 
參考資料