複製鏈接
請複製以下鏈接發送給好友

董磊

(山西大學教授)

鎖定
董磊,男,1979年出生,河南新鄉人,2007年參加工作,光學博士 [1] 山西大學激光光譜研究所二級教授 [2]  ,博士生導師 [3]  ,教育部激光碳監測技術國際合作聯合實驗室主任 [2] 
中文名
董磊
外文名
Lei Dong
國    籍
中國
民    族
出生日期
1979年
畢業院校
山西大學
職    業
大學教師
出生地
河南新鄉

董磊人物介紹

董磊,山西大學二級教授、博導,國家優秀青年科學基金獲得者 [4]  ,“青年三晉學者”特聘教授 [5]  ,山西省中青年拔尖創新人才 [6]  和山西省“三晉英才”支持計劃入選者 [2]  。主要從事激光光譜傳感技術在工業、環境、電力、醫療等領域的應用基礎研究。在光聲光譜用於痕量氣體檢測方面取得了系列重要成果,解決了高靈敏的石英增強光聲光譜從近紅外向長波中紅外太赫茲波段應用拓展及與大功率光源結合的關鍵技術問題;發展了基於音叉式石英晶振用於新材料研究的傳感新技術。主持國家重點研發計劃、國家基金委優青/重點/面上項目、裝備發展部預研項目等國家及省部級項目20餘項;在Nat. Commun.,Light-Sci. Appl.,Appl. Phys. Rev.,Sens Actuators B:Chem.,Appl. Phys. Lett.,Opt. Lett.,Opt. Express等高影響力的國際刊物上共發表學術論文240餘篇,SCI正面引用5800餘次,ESI高被引論文6篇,H-index為46;入選愛思唯爾“中國高被引學者”榜單 [7]  ,入選全球前2%頂尖科學家榜單;以第一發明人授權發明專利22項,其中6項已分別在杭州聚光科技等4家公司實施了轉化,科研成果獲教育部技術發明一等獎、山西省自然科學一等獎、中國光學學會技術發明一等獎各1項;教學成果獲得山西省本科教學成果一等獎2項,研究生教學成果特等獎1項。是山西省委聯繫專家、山西省光學學會副理事長、山西省計量測試學會副理事長。 [2] 

董磊研究方向

  1. 新型光聲光熱光譜傳感技術(石英增強光聲、FTIR光聲、頻率梳光聲、THz光聲等) [2] 
  2. 基於微型長光程池的可調諧半導體吸收光譜技術 [2] 
  3. 光電儀器研製與測試(環境、醫療、電力等領域) [2] 

董磊人物經歷

參考 [2]  [21] 
2014.12- 至今 山西大學激光光譜研究所 教授
2009.10-2014.12 山西大學激光光譜研究所 副教授
2008.06-2011.12 美國萊斯大學 博士後 合作導師:Frank K. Tittel
2002.09-2007.07 山西大學物理電子工程學院 獲博士學位 導師:賈鎖堂
1998.09-2002.07 山西大學物理電子工程學院 獲學士學位

董磊學術兼職

山西省委聯繫專家 [2] 
山西省光學學會副理事長 [8] 
山西省計量測試學會副理事長 [2] 
中國光學學會激光光譜學專委會委員 [9] 
《中國激光》雜誌社青年編委 [10] 
《大氣與環境光學學報》編輯委員會青年編委 [11] 
《光學學報》激光光譜,光譜學欄目專題編輯 [8] 
國際期刊《Photoacoustics》 [2] 《Sensors》客座編輯 [12] 
美國萊斯大學激光科學組客座教授 [13] 
意大利巴里理工大學PolySenSe聯合實驗室客座教授 [14] 
美國光學學會高級會員 [15] 
國際電氣和電子工程學會IEEE會員 [2] 
意大利巴里理工大學工業4.0博士學位委員會委員 [2] 

董磊獲獎和榮譽稱號

  1. “基於腔增強石英諧振的超高靈敏光聲傳感關鍵技術及應用”,2022年度教育部高等學校科學研究優秀成果獎,技術發明一等獎,排名2 [17] 
  2. “超靈敏快速石英增強光聲傳感機理與應用研究”, 2023年度山西省科學技術獎,自然科學一等獎,排名1 [18] 
  3. “超靈敏快速石英增強光聲傳感關鍵技術及應用”,2023年度中國光學學會科技創新獎,技術發明一等獎,排名1 [19] 
  4. “價值引領,知行合一:雙一流建設中電子信息類專業“三位一體”人才培養實踐”,2023年度山西省教學成果(本科生)一等獎,排名1 [20] 
  5. “服務國家重大需求,強化有組織科研:量子精密測量創新人才培養的探索與實踐”,2023年度山西省教學成果(研究生)特等獎,排名2 [22] 
  6. “以研促教、以賽促學電子信息類專業基礎課程教學新模式的構建與實踐”,2023年度山西省教學成果(本科生)一等獎,排名3 [20] 
  7. “2022年度山西最美科技工作者”,中共山西省委宣傳部、山西省科學技術協會、山西省科學技術廳、山西省國防科學技術工業局 [23] 
  8. “高校教學名師”,2023,山西省教授學會 [24] 
  9. 連續兩年入選愛思唯爾“中國高被引學者”榜單 [25] 
  10. 連續四年入選全球前2%頂尖科學家榜單 [26] 

董磊科研項目

參考 [2] 
  1. 國家基金重點項目:面向太赫茲波段的短程定域超快氣相光聲傳感理論與技術研究,2023.1.1~2027.12.31,項目主持
  2. 國家重點研發計劃:基於自組網無人機羣的污染氣體激光監測平台,2020.12~2023.11,項目主持
  3. 國家基金面上項目:多聲源激勵石英增強光聲光譜技術研究,2022.1.1~2025.12.31,項目主持
  4. 山西省傑青項目:基於聲波疊加的石英增強光聲光譜技術研究,2022.1.1~2025.12.31,項目主持
  5. 國家優秀青年科學基金項目:新型光聲光熱光譜傳感技術,2017.01~2019.12,項目主持
  6. 國家自然科學基金面上項目:石英增強光熱光譜技術研究,2016.01~2019.12,項目主持
  7. 國家自然科學基金面上項目:光學調製相消法用於高靈敏氣相同位素丰度測量的技術研究,2013.1~2016.12,項目主持
  8. 國家自然科學基金青年項目:腔增強石英諧振光聲光譜技術研究,2012.01~2014.12,項目主持
  9. 山西留學人員科技活動項目:二氧化氮測量新技術及其應用於霧霾成因的研究,2018.10~2020.10,項目主持
  10. 國家科技支撐計劃:煤電節能減排在線監測及優化控制系統研發與工程示範,2013.6~2016.6,項目參與
  11. 山西省自然科學基金:光學腔用以增強石英諧振光聲光譜信號的作用機理研究,2013.01~2015.12,項目主持
  12. 橫向課題:基於光聲光譜多組分氣體檢測技術的研究,2016.4~2017.10,項目主持

董磊代表論文

近期代表性論文: [2]  [16] 
  1. “Quartz-enhancedmultiheterodyne resonant photoacoustic spectroscopy” Light: Science & Applications 13, 77 (2024)
  2. “Cantilever-enhanceddual-comb photoacoustic spectroscopy” Photoacoustics 38, 100605 (2024)
  3. “Photoacousticspectroscopy for fault diagnostics in high voltage power transmission systems:A review” Measurement 227, 114259 (2024)
  4. “Folded-optics-basedquartz-enhanced photoacoustic and photothermal hybrid spectroscopy”Photoacoustics 35, 100580 (2024)
  5. “PhotoacousticHeterodyne CO Sensor for Rapid Detection of CO Impurities inHydrogen”Analytical Chemistry 96, 547 (2024)
  6. “End-to-end methanegas detection algorithm based on transformer and multi-layer perceptron”Optics Express 32, 987 (2024)
  7. “Carbon monoxideimpurities in hydrogen detected with resonant photoacoustic cell using a mid-IRlaser source” Photoacoustics 36, 100585 (2024)
  8. “Ppb-level NH3photoacoustic sensor combining a hammer-shaped tuning fork and a 9.55 µmquantum cascade laser” Photoacoustics 33, 100557 (2023)
  9. “Light-inducedthermoelastic sensor for ppb-level H2S detection in a SF6gas matrices exploiting a mini-multi-pass cell and quartz tuning forkphotodetector” Photoacoustics 33, 100553 (2023)
  10. “Assessment ofvibrational-translational relaxation dynamics of in a wet-nitrogen matrixthough QEPAS” Photoacoustics 31, 100518 (2023)
  11. “Roadmap onnonlinear optics-focus on Chinese research” Journal of physics: photonics 5,032501 (2023)
  12. “Quartz-enhancedphotoacoustic spectroscopy (QEPAS) and Beat frequency-QEPAS techniques for airpollutants detection: a comparison in terms of sensitivity and acquisitiontime” Photoacoustics 31, 100479 (2023)
  13. “Synthesizing MetalOxide Semiconductors on Doped Si/SiO2 Flexible Fiber Substrates for Wearable Gas Sensing” Research 6, Article 0100 (2023)
  14. “Detection ofHydrogen Sulfide in Sewer Using an Erbium-Doped Fiber Amplified Diode Laser anda Gold-Plated Photoacoustic Cell” Molecules 27, 6505 (2022)
  15. “Ppb-level mid-IRquartz-enhanced photoacoustic sensor for sarin simulant detection using aT-shaped tuning fork” Sensors and Actuators: B. Chemical 390, 133937 (2023) (重)
  16. “Non-invasive skinrespiration (CO2) measurement based on quartz-enhanced photoacousticspectroscopy” Analytical Chemistry 95, 6138 (2023)
  17. “Methodology andapplications of acousto-electric analogy in photoacoustic cell design for tracegas analysis” Photoacoustics 30, 100475 (2023)
  18. “Measurement ofmethane, nitrous oxide and ammonia in atmosphere with a compact quartz-enhancedphotoacoustic sensor” Sensors and Actuators: B. Chemical 375, 132953 (2023)
  19. “Characterizationof H2S QEPAS detection in methane-based gas leaks dispersed intoenvironment” Photoacoustics 29, 100438 (2023)
  20. “Tracephotoacoustic SO2 gas sensor in SF6 utilizing a 266 nm UV laser and an acousto-optic power stabilizer” Optics Express 31, 6974 (2023)
  21. “Methane and ethanedetection from natural gas level down to trace concentrations using a compactmid-IR LITES sensor based on univariate calibration” Photoacoustics 29, 100448(2023)
  22. “Simultaneous monitoringof atmospheric CH4, N2O, and H2O using a singlegas sensor based on Mid-IR quartz-enhanced photoacoustic spectroscopy” Analytical Chemistry 94, 17522 (2022)
  23. “Position effect oflaser beam waist in quartz-enhanced photoacoustic spectroscopy” Infrared Physics and Technology 125, 104271 (2022)
  24. “All-opticallight-induced thermoacoustic spectroscopy for remote and non-contact gassensing” Photoacoustics 27, 100389 (2022)
  25. “Clamp-type quartz tuning fork enhancedphotoacoustic spectroscopy” Optics Letters 47, 4556 (2022)
  26. “Photoacousticheterodyne breath sensor for real-time measurement of human exhaled carbonmonoxide” Photoacoustics 27, 100388 (2022)
  27. “Calibration-freemid-infrared exhaled breath sensor based on BF-QEPAS for real-time ammoniameasurements at ppb level” Sensors and Actuators: B. Chemical 358, 131510(2022)
  28. “Elliptical-tubeoff-beam quartz-enhanced photoacoustic spectroscopy” Applied Physics Letters 120, 171101 (2022)
  29. “Quartz-enhancedphotoacoustic NH3 sensor exploiting a large-prong-spacing quartztuning fork and an optical fiber amplifier for biomedical applications” Photoacoustics 26, 100363 (2022)
  30. “High-concentrationmethane and ethane QEPAS detection employing partial least squares regressionto filter out energy relaxation dependence on gas matrix composition” Photoacoustics 26, 100349 (2022)
  31. “Compactquartz-enhanced photoacoustic sensor for ppb-level ambient NO2detection by use of a high-power laser diode and a grooved tuning fork” Photoacoustics 25, 100325 (2022)
  32. “Compact QEPAShumidity sensor in SF6 buffer gas for high-voltage gas powersystems” Photoacoustics 25, 100319 (2022)
  33. “Quartz-EnhancedPhotoacoustic Spectroscopy for multi-gas detection: a review” Analytica Chimica Acta 1202, 338894 (2022)
  34. “Highand flat spectral responsivity of quartz tuning fork used as infraredphotodetector in tunable diode laser spectroscopy” Applied Physics Reviews 8, 041409 (2021)
  35. “Multiple-sound-source-excitation quartz-enhanced photoacoustic spectroscopybased on a single-line spot pattern multi-pass cell” Applied Physics Letters 118, 161101 (2021)
  36. “Palm-sizedmethane TDLAS sensor based on a mini-multi-pass cell and a quartz tuning fork as a thermal detector” Optics Express 29, 12357-12364 (2021)
  37. “H2Squartz-enhanced photoacoustic spectroscopy sensor employing aliquid-nitrogen-cooled THz quantum cascade laser operating in pulsed mode” Photoacoustics 21, 100219 (2021)
  38. “Quartz-enhancedphotoacoustic spectroscopy exploiting low-frequency tuning forks as a tool tomeasure the vibrational relaxation rate in gas species” Photoacoustics 21,100227 (2021)
  39. “Ppb-levelgas detection using on-beam quartz-enhanced photoacoustic spectroscopy based ona 28kHz tuning fork” Photoacoustics 25, 100321 (2021)
  40. “Mid-infraredquartz-enhanced photoacoustic sensor for ppb-level CO detection of SF6decomposition exploiting an exotic T-grooved quartz tuning fork” AnalyticalChemistry 92, 13922 (2020)
  41. “Three-dimensionalprinted miniature fiber-coupled multipass cells with dense spot patterns forppb-level methane detection using a near-IR diode laser” Analytical Chemistry 92,13034 (2020)
  42. “PartialLeast-Squares Regression as a Tool to Retrieve Gas Concentrations in MixturesDetected Using Quartz-Enhanced Photoacoustic Spectroscopy” Analytical Chemistry 92, 11035 (2020)
  43. “Light-inducedthermo-elastic effect in quartz tuning forks exploited as a photodetector ingas absorption spectroscopy” Optics Express 28, 19074 (2020)
  44. “Quartz-enhancedphotoacoustic spectroscopy for hydrocarbon trace gas detection and petroleumexploration” Fuel 277, 118118 (2020)
  45. “Generalized opticaldesign of two-spherical-mirror multi-pass cells with dense multi-circle spotpatterns” Applied Physics Letters 091103 (2020)
  46. “ppb-Level SO2Photoacoustic Sensors with a Suppressed Absorption−Desorption Effect by Using a 7.41 μm External-Cavity Quantum scadeLaser” ACS Sensors 5, 549 (2020)
  47. “Piezo-enhancedacoustic detection module for mid-infrared trace gas sensing using a groovedquartz tuning fork” Optics Express 27, 35267 (2019)
  48. “Dual-gasQuartz-enhanced photoacoustic sensor for simultaneous detection ofmethane/nitrous oxide and water vapor” Analytical Chemistry 91, 12866 (2019)
  49. “Atmospheric CH4measurement near a landfill using an ICL-based QEPAS sensor with V-T relaxationself-calibratiion” Sensors and Actuators B: Chemical 297, 126753 (2019)
  50. “Ppb-levelquartz-enhanced photoacoustic detection of carbon monoxide exploiting a surfacegrooved tuning fork” Analytical Chemistry 91, 5831 (2019)
  51. “Ppb-level nitricoxide photoacoustic sensor based on a mid-IR quantum cascade laser operating at52oC” Sensors and Actuators B: Chemical 290, 426 (2019)
  52. “Cavity-enhancedphotoacoustic sensor based on a whispering-gallery-mode diode laser” Atmospheric Measurement Techniques 12, 1905 (2019)
  53. “Simultaneousmulti-gas detection between 3 and 4 μmbased on a 2.5-m multipass cell and atunable Fabry-Pérot filter detector” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 216, 154 (2019)
  54. “Calculation modelof dense spot pattern multipass cells based on a spherical mirror aberration” Optics Letters 44, 1108 (2019)
  55. “Highly sensitivephotoacoustic multicomponent gas sensor for SF6 decomposition onlinemonitoring” Optics Express 27, A224 (2019)
參考資料
展開全部 收起