本詞條缺少概述图,補充相關內容使詞條更完整,還能快速升級,趕緊來編輯吧!
線性時不變系統是根據系統輸入和輸出是否具有線性特性來定義的。滿足疊加原理的系統具有線性特性。
- 中文名
- 線性時不變系統
- 外文名
- Linear and Time-invariant System
- 英文簡稱
- LTI System
- 包 括
- 連續時間系統與離散時間系統
線性時不變系統簡介
編輯線性時不變系統
英文:linear time invariant System(LTI System)
線性時不變系統概念
編輯線性系統有兩種定義:
線性時不變系統系統性質
編輯時不變系統:就是系統的參數不隨時間而變化,即不管輸入信號作用的時間先後,輸出信號響應的形狀均相同,僅是從出現的時間不同。用數學表示為T[x(n)]=y[n]則 T[x(n-n0)]=y[n-n0],這説明序列x(n)先移位後進行變換與它先進行變換後再移位是等效的。
線性時不變系統
任一輸入序列x(n)的響應y(n)=T[x(n)]=T[ δ(n-k)];
由於系統是線性的,所以上式可以寫成y(n)=T[δ(n-k)];
又由於系統是時不變的,即有T[δ(n-k)]=h(n-k);
從而得y(n)=h(n-k)=x(n)*h(n);
這個公式稱為線性卷積,用“*”表示。
線性時不變系統
齊次性
若激勵f(t)產生的響應為y(t),則激勵Af(t)產生的響應即為Ay(t),此性質即為齊次性。其中A為任意常數。
f(t)系統y(t),Af(t)系統Ay(t)
疊加性
若激勵f1(t)與f2(t)產生的響應分別為y1(t), y2(t),則激勵f1(t)+f2(t)產生的響
應即為y1(t)+y2(t),此性質稱為疊加性。
線性
若激勵f1(t)與f2(t)產生的響應分別為y1(t), y2(t),則激勵A1f1(t)+A2f2(t)產生
的響應即為A1y1(t)+A2y2(t),此性質稱為線性。
時不變性
若激勵f(t)產生的響應為y(t),則激勵f(t-t0)產生的響應即為y(t-t0),此性質稱為
不變性,也稱定常性或延遲性。它説明,當激勵f(t)延遲時間t0時,其響應y(t)也延
遲時間t0,且波形不變。
微分性
若激勵f(t)產生的響應為y(t),則激勵f'(t)產生的響應即y’(t),此性質即為微分性。
積分性
若激勵f(t)產生的響應為y(t),則激勵f(t)的積分產生的響應即為y(t)的積分。此性質稱為積分性。
- 詞條統計
-
- 瀏覽次數:次
- 編輯次數:29次歷史版本
- 最近更新: Lemon西厢