複製鏈接
請複製以下鏈接發送給好友

線性變換

鎖定
線性映射( linear mapping)是從一個向量空間V到另一個向量空間W的映射且保持加法運算和數量乘法運算,而線性變換(linear transformation)是線性空間V到其自身的線性映射。 [1] 
中文名
線性變換
外文名
linear mapping
別    名
線性映射
定    義
線性空間V到W的保線性的映射
應用學科
數學

目錄

線性變換定義

(1)線性變換是線性空間V到自身的映射通常稱為V上的一個變換。
線性變換參考圖 線性變換參考圖
同時具有以下定義:
線性空間V上的一個變換A稱為線性變換,對於V中任意的元素αβ和數域P中任意k,都有
A(α+β)=A(α)+A(β
A (kα)=kA(α)
(2)線性變換是線性代數研究的一個對象,即向量空間到自身的保運算的映射。例如,對任意線性空間V,位似是V上的線性變換,平移則不是V上的線性變換。對線性變換的討論可藉助矩陣實現。σ關於不同基的矩陣是相似的。Kerσ={a∈V|σ(a)=θ}(式中θ指零向量)稱為σ的核,Imσ={σ(a)|a∈V}稱為σ的象,是刻畫σ的兩個重要概念。 [1] 
對於歐幾里得空間,若σ關於標準正交基的矩陣是正交(對稱)矩陣,則稱σ為正交(對稱)變換。正交變換具有保內積、保長、保角等性質,對稱變換具有性質:〈σ(a),β〉=〈a,σ(β)〉。
(3)在數學中,線性映射(也叫做線性變換線性算子)是在兩個向量空間之間的函數,它保持向量加法和標量乘法的運算。術語“線性變換”特別常用,尤其是對從向量空間到自身的線性映射(自同態)。
(4)在抽象代數中,線性映射是向量空間的同態,或在給定的域上的向量空間所構成的範疇中的態射

線性變換性質

(1)設A是V的線性變換,則A(0)=0,A(-α)=-A(α); [2] 
(2)線性變換保持線性組合與線性關係式不變;
(3)線性變換把線性相關的向量組變成線性相關的向量組。
注意:線性變換可能把線性無關的向量組變成線性相關的向量組。

線性變換運算

線性變換的加法和數量乘法 [1] 
定義一: 設
,對A 與B和A+B定義為:
定義二:設
,對k與A的數量乘積kA定義為:
定義三:設
,對A 與B的乘積AB定義為:
定義四:設
,若存在
,使得
,則稱A是可逆的,且B是A的逆變換,記為:

線性變換理解

關於線性變換和特徵值的理解 [3] 
線性變換參考圖 線性變換參考圖
首先我們來看這樣一個事實。一個二維的直角座標系XOY,然後逆時針方向旋轉了ө角變為X’OY’後,考察會發現XOY和 X’OY’的座標系之間存在這樣的轉化關係。就是説在XOY座標系下的某一個點在X’OY’座標系下的座標變了 。那麼我們同樣來考察一下這兩個座標系下的基座標。就是來考察在XOY座標系下的基座標 (1,0)和(0,1)在新的座標系X’OY’下的 基座標下的投影大小用(1,0)和(0,1)來表示為這樣的。注意,這裏的矩陣的排列是前面兩個基座標係數方程的轉置矩陣,之所以寫為轉置矩陣是因為我們習慣這樣來寫基座標的線性變換A =( , ) 。我們可以看到這樣的旋轉變換的目的就是把座標系旋轉後來看一下。這樣的旋轉角度一旦確定以後,我們就能夠得到原來的老座標下的座標點在新座標系下的座標為 。注意的是,這裏的座標是右乘變換矩陣。
雙線性變換圖 雙線性變換圖
線性變換數學定義在一般的高等代數學書中都可以找到。A(a+b)=Aa+Ab,Aka=kAa。其中a,b是V中的線性空間。這個定義就是説把空間中的元素(特殊地想為三維空間的向量)經過一個變換,而這種變換是具有線性的特性的。那麼這種變換的從一個元素轉變到另外一個元素的對應關係,我們可以用前面的一個矩陣來表示,稱為線性變換矩陣
在三維空間中,我們有一個球心在原點(XOYZ和 X’OY’Z’的座標系具有不為零的三個歐拉角)的球面,球面上的每一個點當然都有一個空間矢量,我們讓這個球開始沿着X’OY’Z’的三個主軸方向變化,假設X’,Z’方向膨脹,Y’方向收縮,那麼我們可以想見,只有這三個方向的位置矢量是沿着原來的方向變化着的,其它的位置矢量在新的位置都會和原來的位置矢量有一個夾角。容易直觀的理解,這樣的變換是線性變換。
線性變換算式 線性變換算式
下面我們要考慮的問題是,怎樣來描述這樣一個變換過程。無疑我們可以用變換矩陣來表明表面上任意一個點在變化前後的位置對應關係。但是如果用X’OY’Z’座標系(一個基座標)來描述這種變換的話,要比XOYZ座標系(另外一個基座標)下的變換矩陣要簡單一些。問題是,在一般情況下,我們得到的變換矩陣都是在一般的基座標下的矩陣。前面的二維例子已經指出,變換矩陣就是把一個元素(向量)變換到另外一個元素(向量)的過程。那麼,我們先來考察這個元素是基座標的特列會得到什麼樣的結果。假設我們已經給出這樣的一個變換矩陣。 那麼我們再來右乘一個基座標。得到的結果就是這個基向量。變為了一個不和原來的基座標同方向的矢量。同樣地,其它兩個基座標也會變化為其它的方向。進一步我們指出,如果説空間中的向量(因為任何一個向量都可以用無關的基向量表述)。
線性變換算式 線性變換算式
我們可以想象,在這種變換矩陣的作用下,能否找到空間中某一個向量經過這種方式變換以後,具有和原來的向量同方向,但是隻是它的這個大小具有倍的關係,即我們經常見到的 。假設我們這樣的向量存在的話,那麼我們的就稱為特徵向量,(因為其具有線性變換下方向不變的特徵), 稱為特徵值。很顯然,我們可以用前面的圓球變橢球來想象,這種情況是可能發生的,但是我們指出,這種情況發生與否只與變換矩陣本身相關。關於變換矩陣的特徵值和特徵向量,其具體的求法就是求解一個特徵多項式,得到特徵值後,將每一個特徵值反帶回元原來的方程組得到特徵向量。並且,我們指出,物理意義上相同的同一個線性變換,用不同的基座標來表示得到的變換矩陣是不一樣的(就拿旋轉變換來説吧,假設已經有了兩個座標系XOY和 X’OY’,又有第三個座標X’’OY’’首先與XOY重合,然後在旋轉一個角度,那麼這個轉轉變換在XOY和 X’OY’座標系下的變換矩陣顯然是不一樣的,因為針對不同座標系的旋轉角度是不一樣的)。但是,可以證明同一種變換在不同的基座標下的變換矩陣是相似的。並且可以證明相似矩陣具有相同的特徵多項式,這也就是説同一個變換的特徵多項式至於變換本身有關係,而與具體的選擇的基座標無關,是有變換本身的特性決定的。那麼,我們自然可以相問,能否找到一個基,使得這個變換矩陣具有最簡單的形式(當然是對角矩陣了)。換句話説,就是能否找到一個矩陣和對角性矩陣相似。我們先來在假設第一個問題量是肯定的情況下,來看看第二個問題。我們還是用前面的圓球變橢球來想象,這種物理上的變換是不會隨着基座標系的改變而改變的。那麼就圓球變橢球的例子,我們可以看到,在XOY座標系下的變換矩陣不簡單,但是,如果我們將基座標選擇為和 X’OY’重合,那麼在這個座標系下,同樣基座標方向上的那個向量在進行矩陣變換後只是變為原來的λ倍。在這個特徵向量作為基的情況下,我們得到的線性變換的矩陣是最簡單的對角形矩陣,並且對角線上的元素全是特徵向量的特徵值,至於具體的排列順序沒有嚴格的要求,但是,必須和你選擇的基座標的順序一樣,也就是説,如果選擇位置的話,那麼就同時必須把 對應的特徵向量作為X方向的基座標。同時我們也可以看到,在三維空間中,變換矩陣表示為對角形的三個基向量是線性無關的,這個概念推廣就是我們一般的結論那就是一個nxn維變換矩陣能相似於一個對角形矩陣(或者説可以在特徵向量的基座標下變化為對角形)的充要條件就是必須具有n個線性無關的特徵向量。如果這一結論對所有矩陣都成立的話就比較好了,但是可惜的是,並非所有矩陣都有和其維數一樣多的特徵向量。但是,我們可以得出如下的結論。1、屬於不同特徵值的特徵向量彼此之間線性無關,2、如果某一特徵值有幾個線性無關向的特徵向量,那麼這幾個線性無關向量和其它任何不同特徵值的特徵向量是線性無關的。3、矩陣相似與對角陣的條件是矩陣有和維數一樣多的線性無關特徵向量。我們最後指出,實對稱矩陣必定可以對角化。最後我們來聯繫流體力學來看,張量的意思就是把變化到另外一個地方去。那麼變形速度張量和一個的右向內積就是得到一個變形速度。
線性變換參考圖 線性變換參考圖
參考資料
  • 1.    同濟大學數學系 .工程數學:線性代數(第六版):高等教育出版社,2014
  • 2.    曾梅蘭. 線性變換及矩陣可交換的性質與應用[J]. 湖北工程學院學報, 2006, 26(3):44-46.
  • 3.    彭明海, 彭學梅. 談歐氏空間中的變換和線性變換[J]. 數學通報, 1998, 1: 42-43.