複製鏈接
請複製以下鏈接發送給好友

細胞色素氧化酶

鎖定
細胞色素氧化酶是電子傳遞鏈末端的酶,具有質子泵的作用,可將H+由基質抽提到膜間隙,同時可通過血紅素中鐵原子的氧化還原變化,把電子傳遞給還原的氧形成水。
中文名
細胞色素氧化酶
外文名
cytochrome oxidase [3] 
定    義
電子傳遞鏈末端的酶
應用學科
細胞生物學
細胞生理

細胞色素氧化酶簡介

電子傳遞鏈的細胞色素氧化酶 電子傳遞鏈的細胞色素氧化酶 [3]
細胞色素氧化酶亦稱細胞色素C氧化酶。在細胞呼吸中處於細胞色素系統的末端。此酶是把呼吸底物的電子經過細胞色素系統直接傳遞給分子態氧(即具有自動氧化作用)。EC1.9.3.1。通常用還原型細胞色素c的氧催化氧化的作用來進行活性測定。
凱林(D.Keilin,1930)在心肌提取物中首先發現此酶的活性。以前認為是靛酚氧化酶所催化,後來明確了靛酚反應是與細胞色素c和細胞色素c氧化酶二者都有關係。從那以後,凱林在心肌和酵母中發現與一氧化碳結合的一種細胞色素(細胞色素a3),並認為這就是細胞色素c氧化酶的原態。而且這種作用可被氫氰酸等重金屬試劑強烈抑制。特別是由於一氧化碳的(對氧具有頡頏作用的)抑制作用可以為光的照射所恢復,對細胞呼吸認為與瓦勃(O.H.Warburg,1926)假設的呼吸酶為同一物質。
細胞色素氧化酶(英文名稱:Cytochrome c oxidase)是一種氧化還原酶通用名為“細胞色素-c氧化酶”,系統名稱為“亞鐵細胞色素-c:氧氣氧化還原酶”(EC1.9.3.1)。它是一種存在於細菌或線粒體上的大型跨膜蛋白複合物。由於細胞色素氧化酶是呼吸電子傳遞鏈的第四個中心酶複合物,因此又被稱為複合物IV(英文Complex IV)。它可以接受來自四個細胞色素c的四個電子,並傳遞到一個氧氣分子上,將氧氣轉化為兩個水分子。在這一進程中,它結合來自基質內的四個質子來製造水分子,同時跨膜轉運四個質子,從而有助於形成跨膜的質子電化學勢能差,而這一勢能差可以被三磷酸腺苷合酶用於製造生物體中最基本的能量分子ATP結構  細胞色素c氧化酶〔同源二聚體〕的結構,位於磷脂雙分子層中。
PDB1OCC  細胞色素氧化酶複合物是一個大型蛋白質,位於粒線體內膜(inner-membrane)上,含有多個金屬輔因子和13個亞基(在哺乳動物細胞中)。其中,10個亞基是來自細胞核,而另外三個亞基則是在線粒體中合成。複合物還含有兩個血紅素、一個細胞色素a和細胞色素a3以及兩個銅中心(CuA和CuB)。 實際上,細胞色素a3和CuB形成了一個雙核心中心,作為氧氣的還原位點。細胞色素c被呼吸鏈複合物III還原後,會結合到CuA雙核中心,並把一個電子傳遞給雙閤中心,細胞色素c本身則恢復氧化狀態(細胞色素c上的鐵從+2價氧化到+3價)。被還原的CuA雙核中心再將一個電子通過細胞色素a傳遞給細胞色素a3-CuB雙核中心。在這一雙核中心上的兩個金屬離子相距4.5Å,並通過一個處於完全氧化狀態的氫氧根離子相連接。 [2] 
對牛細胞色素氧化酶的結構研究顯示,它發生了特殊的翻譯後修飾,即其244位上的酪氨酸(Tyr244)的C6原子和240位上的組氨酸Nε原子被共價連接。這一修飾作用細胞色素a3-CuB雙核中心接受4個電子來將氧氣還原為水分子的過程中發揮了重要作用。過去認為還原機制包括有一個可以導致超氧化物形成的過氧化物中間體。但普遍接受的機制是一個快速的四電子還原過程,包括迅速的氧-氧鍵剪切,以避免任何中間產物形成超氧化物的可能性。 [1]  [2] 

細胞色素氧化酶應用學科

細胞生物學一級學科);細胞生理(二級學科)

細胞色素氧化酶組裝

細胞色素氧化酶是由多個亞基和輔因子組成的,必須要通過組裝才能形成完成的活性分子。它的組裝位點被認為接近TOM/TIM複合體;在這一位置,複合物中間體可以與來自原生質中的亞基結合。血紅素和輔因子被插入到亞基I和II中。亞基I和IV可以啓動組裝。其他亞基可以先形成亞複合物中間體,然後再與亞基I和IV結合形成完整的細胞色素氧化酶。在組裝後修飾中,酶分子發生二聚化以獲得有效的酶活性二聚體是通過一個心磷脂(cardiolipin)分子來連接。整個組裝機制的信息已經得到大量的揭示, 但具體過程還有待進一步的研究。 [1] 

細胞色素氧化酶生物化學性質

細胞色素氧化酶催化機制簡圖  細胞色素氧化酶催化的整體反應是:  4 Fe-細胞色素c + 8 H進 + O2 → 4 Fe-細胞色素c + 2 H2O + 4 H出  整個催化過程 如下:首先兩個電子從兩個細胞色素c分子通過CuA和細胞色素a傳遞到細胞色素a3-CuB雙核中心,將中心的金屬還原為Fe和Cu。連接兩個金屬離子氫氧根在被質子化後生成分子而被釋放,從而兩個金屬離子之間產生了一個空腔,這一空腔被一個氧氣分子所填充。氧氣分子與細胞色素a3中的鐵原子結合形成鐵氧結合形式(Fe-O2)。結合的氧很快被還原,其中一個氧原子與鐵形成Fe=O形式;而另一個接近CuB的氧原子接受來自Cu的一個電子和來自Tyr244上羥基的一個電子和一個質子,被轉化為一個氫氧根,同時Tyr244轉變為酪氨酰自由基。來自另一個細胞色素c分子的第三個電子通過相同的途徑被傳遞到細胞色素a3-CuB雙核中心,隨後這個電子和兩個質子將酪氨酰自由基重新還原為酪氨酸,並將結合在CuB上的氫氧根轉化為水分子。同樣來自細胞色素c分子的第四個電子在進入細胞色素a3-CuB雙核中心後,將Fe=O還原為Fe,同時氧原子接受一個質子轉變為一個氫氧根連接於細胞色素a3-CuB中心,從而整個循環回到起始狀態。整個反應過程淨利用了4個還原的細胞色素c分子(提供4個電子)、4個質子(消耗8個,產生4個),將一個氧氣分子還原為兩個水分子。 [1] 
參考資料
  • 1.    朱正威.生物學 :人民教育出版社,2012
  • 2.    趙鋭峯. 種公牛不育候選基因GSTs-Mu和COX SNP位點篩查與基因診斷方法建立[D].吉林大學,2010.
  • 3.    Cytochrome Oxidase  .Chemistry LibreTexts[引用日期2023-05-27]