複製鏈接
請複製以下鏈接發送給好友

碳星

鎖定
碳星是大氣層內的碳比多,類似紅巨星(偶爾是紅矮星)的晚期星。這兩種元素在恆星大氣的上層結合,形成一氧化碳,消耗掉大氣中所有的氧,只留下自由的碳原子和其他的碳結合,使得恆星充滿了像"煤灰"的大氣層, 而觀測人員看見的則是醒目的紅色。通常碳星是一些温度只有2500-3500K的紅巨星,但碳星並不是僅僅只有紅色恆星組成,一些AGB後期逐漸向藍色端演化的恆星也可以是碳星,比如北冕座R,這個恆星的表面温度就達約6500K。
碳星的質量不高,但這是由於碳星通過恆星風損失了大量物質的關係。碳星的前身星通常是比太陽重數倍的中大型恆星。碳星已經演化到了恆星的末期階段,經過了這個階段它將逐漸拋出自己的全部殼層,向着白矮星演化。
在光譜上,這類恆星的特徵非常明顯,因此早在1860年就被安吉洛·西奇在早期的天文分光學上標示出來。在一般的恆星 (像太陽的恆星) ,大氣中的氧含量都比碳多。著名的碳星有獵犬座Y和天兔座R(欣德的紅星)。
中文名
碳星
外文名
Carbon star
別    名
黑炭塔
分    類
恆星,變星,紅巨星
發現者
田海川
發現時間
2015年10月13日
質    量
0.8-5個太陽質量
平均密度
3212978=black hole
直    徑
10-700倍太陽直徑
表面温度
2000-7000K
反照率
不是行星
絕對星等
亮於-2.0
光譜類型
C
最大碳星
獅子座CW

碳星星體構造

碳星 碳星
表層含有的碳多於紅巨星
天鵝座TT型星是一顆温度不高的紅巨星。這張天鵝座TT型星的假色圖,是由毫米電波望遠鏡 的數組拍攝的,圖中的影像是由一氧化碳(CO)分子所發出的無線電波,由圖可看出一氧化碳環繞着天鵝座TT型星。圖中間的一氧化碳發射源,是紅巨星於數百年內吹出來的。而外圍薄環的半徑大約有1/4光年,實際上它是一層向外膨脹的氣體,大約是6000年前開始膨脹的。 像天鵝座TT型星的這類星球,它們含碳的比例比一般恆星還要高,這就是為何稱呼它們為碳星的原因。碳可能是來自於恆星內部融合後的產物。碳星會以恆星風的方式,拋掉相當多的重量,這些重量佔了恆星總重量相當大的比例。吹出的恆星風變成星際氣體,而未來新誕生的恆星將由這些星際氣體所組成。天鵝座TT星距離我們約1500Ly。

碳星物理機制

有多種的天文物理機制可以解釋碳星。將之區分為傳統碳星和另一種非傳統碳星,而後者的質量較低。
在傳統碳星,碳的豐盈度來自氦融合產生的,特別是恆星內部的3氦過程,這是當恆星演化主序星歷程的尾聲,抵達漸近巨星分支(AGB)時的核反應。這些融合的產生的碳和其他的產物,都經由對流的作用被送達恆星的表面。通常這些AGB的碳星還有一層氫殼進行氫的融合,但只能存在1萬至10萬年的歲月,恆星的殼層就轉而進行氦融合,而氫的融合就會突然的結束。在這個階段,恆星的亮度會增加,同時物質(主要是碳)從內部向外移動。因為光度上升、恆星膨脹,因此氦融合會突然停止,而氫殼層的融合又再度開始。當氦殼閃光(參考氦閃)進行的階段,因為許多氦殼閃光的轟擊會造成質量的重大損失,AGB星將會轉變成炙熱的白矮星,同時它大氣層中的物質成為行星狀星雲
非傳統碳星被認為是雙星,且其中一顆被觀察到是巨星(偶爾會是紅矮星),另一顆是白矮星。觀察到的是一顆擁有豐富碳的巨星,當它還是主序星時就從伴星獲得物質(這顆伴星是白矮星),且後者依然也是碳星。
對這個階段恆星演化的認識相對來説是相當簡略的,而且多數這一類恆星的結果都是白矮星。我們看這種系統相對來説的在質量傳遞上花了相當長的時間,鋇星,它們的光譜呈現出強烈的鋇和碳分子的特徵,也被認為是在這種場景之下生成的 (S-過程元素)。有時,將這種經由質量傳輸獲得額外碳的碳星被稱為"外因"碳星,以與來自AGB,由內部產生碳的"內因"碳星有所區別。在發現它們是聯星之前,這些都是難題,因為許多外因碳星不僅不夠亮,而且温度也太低,因此不能自行產生碳。
其他令人難以信服的機制,像是碳氮氧循環的失衡和核心氦閃也曾被認為是大氣層中含碳量較少的碳星用來充實碳含量的機制。

碳星觀測碳星

在定義上,碳星的光譜會以C2碳分子的斯旺譜線(Swan Bands)作為主導,還有許多其他的碳化合物,像是 CH、CN()、C3和SiC2,也都有一定的數量。碳在核心形成並且被擴散至上面的數層,戲劇性的改變了數層的結構。其他經由氦融合和S-過程被形成的元素,包括和鋇,也都經由相同的"疏濬"至上層。
當天文學家在發展碳星的光譜類型時,在設法建立實感温度與光譜的關聯時遭遇了極大的實質困難。麻煩的是所有被大氣層中的碳掩藏與吸收的譜線都是通常用於顯示恆星温度的譜線。