複製鏈接
請複製以下鏈接發送給好友

王小林

(南京大學地球科學與工程學院副院長、教授,博導)

鎖定
王小林,男,山東省五蓮縣人,博士,南京大學地球科學與工程學院副院長、教授。 [2] 
中文名
王小林 [1] 
畢業院校
南京大學
學位/學歷
博士
專業方向
礦物學、岩石學、礦牀學
任職院校
南京大學

王小林人物經歷

2023年10月,任南京大學地球科學與工程學院副院長。 [2] 
2019年12月-今 南京大學地球科學與工程學院,教授
2013年5月—2019年12月 南京大學地球科學與工程學院,副教授
2011年7月—2013年5月 南京大學地球科學與工程學院,助理研究員
2009年9月—2011年3月 U.S. Geological Survey (Reston, VA),聯培博士生,實驗地球化學
2006年9月—2011年6月 南京大學地球科學與工程學院,博士,礦物學、岩石學、礦牀學
2002年9月—2006年6月 南京大學地球科學系,學士,地球化學 [1] 

王小林研究方向

(1) 實驗地球化學。採用可視化、在線分析方法,研究地殼—上地幔(21 - 1000 C,0.1 - 3 GPa)流體—熔體的熱力學性質,進而為成巖、成礦研究提供基礎實驗制約;採用先進的熔融毛細硅管合成包裹體技術,建立地質流體(鹽度、S、B以及C-H-O-S-N體系揮發份)原位拉曼光譜定量分析方法
(2) 石油地質學。採用流體包裹體分析、埋藏史恢復和同位素定年技術,釐定油氣生成、運移和聚集的時限;深埋條件下烴類熱化學損耗的機理和動力學;油氣儲層的成因及保存條件,側重酸性流體作用下的次生溶蝕型儲層發育機制
(3) 成礦作用機制。元素在熔體和流體間的分配規律;熱液流體中元素的遷移和沉澱機制,當前側重W-Sn礦牀 [1] 

王小林教學情況

(1) 本科大三專業選修課《油氣資源概論》
(2) 礦牀學研究生必須課程《流體作用與成礦》
(3) 大二暑期課程《區域地質測量》(安徽巢湖野外教學) [1] 

王小林主要獎勵

(1) 國家自然科學基金委優秀青年基金人才項目(2019)
(2) 全國大學生地質技能競賽優秀輔導教師(2016)
(3) 教育部科技進步二等獎(4/6, 2015)
(4) 南京大學中國銀行青年教師教學成果二等獎(2015) [1] 

王小林科研項目

(10) 優秀青年基金項目: 熱液流體實驗地球化學 (Grant no. 41922023), 2020 - 2022, 120萬, 主持
(9) 重點基金項目: 含油氣盆地溶蝕流體類型判識標誌、水-巖作用機理及溶蝕型儲層成因模式 (Grant no. 41830425), 2019 - 2023, 302萬, 研究骨幹
(8) 中石化研究院無錫石油地質研究所協作項目: 高壓油氣包裹體測温測壓實驗技術研究, 2018.09 - 2019.08, 主持
(7) 重點研發計劃子課題: 高温高壓條件下烴類相態轉化及微觀封閉機理 (Grant no. 2017YFC0603105), 2018 - 2021, 200萬, 研究骨幹
(6) 中央高校基本科研業務費原創與交叉研究培育基金項目: 硫酸鹽熱還原反應的機理、動力學特徵及其成礦意義, 2017-2018, 主持
(5) 面上基金項目: 硫酸鹽—水體系高温液—液不混溶作用的發生條件、機理及成礦意義 (Grant no. 41573054), 2016-2019, 主持
(4) 中石化研究院協作項目: 特高含水條件下CO2與岩石相互作用規律研究(Grant no. GSYKY-B09-33), 2014-2015, 主持
(3) 重點基金項目: 含油氣盆地深部流體與圍巖介質相互作用的物理化學過程和機理(Grant no. 41230312), 2013-2017, 研究骨幹
(2) 青年基金項目: 流體中鎂離子性狀與行為及其對白雲石形成的制約(Grant no. 41203045), 2013-2015, 主持
(1) 國家科技重大專項子課題: 深層白雲岩儲層形成機理與發育模式(Grant no. 2011ZX05005-002-008HZ), 2011-2015, 研究骨幹 [1] 

王小林學術成果

王小林論文發表

(A) SCI檢索
[53] Wan Y., Chou I-M.*, Wang X*, Wang R., Li X. (2023) Hydrothermal sulfate surges promote rare earth element transport and mineralization. Geology, 51: 449-453. Doi: https://doi.org/10.1130/G50848.1.
[52] Lu W., Wang X.*, Wan Q., Hu W., Chou I-M., Wan Y. (2023) In situ Raman spectroscopic measurement of the 13C/12C ratio in CO2: Experimental calibrations on the effects of fluid pressure, temperature and composition. Chemical Geology, 615, 121201, doi: https://doi.org/10.1016/j.chemgeo.2022.121201
[51] Zuo Z., Cao J.*, Hu W., Shi C., Wang X., Yao S., Luo B. (2022) Characterizing the maturity of highly evolved organic matter based on aromatic hydrocarbons and optimization with pyrobitumen reflectance and Raman spectral parameters. Science China Earth Sciences, https://doi.org/10.1007/s11430-022-9955-7
[50] Qiu Y., Wang X.*, Lu J., Chou I-M., Wan Y., Zhang R., Zhang W., Sun R. (2022) In situ observations of tungsten speciation and partitioning behavior during fluid exsolution from granitic melt. Sci. Bull., 67: 2358-2368, doi: https://doi.org/10.1016/j.scib.2022.10.024
[49] Sun F., Hu W., Cao J., Wang X., Zhang Z., Ramezani J., Shen S. (2022) Sustained and intensified lacustrine methane cycling during Early Permian climate change. Nature Communications, 13(1): 4856
[48] Zuo Z., Cao J., Wang X., Luo B., Zhong Y., Li K., Hu K. (2022) Characterizing maturity of reservoir pyrobitumen with strong anisotropy: A calibration between reflectance and laser Raman spectral parameters. AAPG Bulletin, 106: 1373-1401.
[47] Wang X.*, Hu W., Qiu Y., Liu Y., Jia D., Cao J., Liu X., Li Y.* (2022) Fluid inclusion evidence for extreme overpressure induced by gas generation in sedimentary basins. Geology, 50: 765-770. Doi: 10.1130/G49848.1
[46] Wu H., Hu W., Wang Y., Tao K., Tang Y., Cao J., Wang X., Kang X. (2021) Depositional conditions and accumulation models of tight oils in the middle Permian Lucaogou Formation in Junggar Basin, northwestern China: New insights from geochemical analysis. AAPG Bulletin, 105(12): 2477-2518.
[45] Yang S., Hu W.*, Wang X., Fan J. (2021) Nitrogen isotope evidence for a redox-stratified ocean and eustasy-driven environmental evolution during the Ordovician-Silurian transition. Global and Planetary Change, 207, 103682. https://doi.org/10.1016/j.gloplacha.2021.103682
[44] Wan Y., Chou I-M.*, Wang X.*, Sun X. (2021) Explorations on footprints of salt-rich fluid and salt-depleted fluid immiscibility in hydrothermal systems: Insights from divergent partitioning of sulfate and perchlorate in the ZnSO4-Zn(ClO4)2-H2O system. Chemical Geology, 584: article no. 120520.
[43] Cui H., Zhong R.*, Xie Y., Wang X.*, Chen H. (2021) Melt–Fluid and Fluid–Fluid Immiscibility in Na2SO4–SiO2–H2O System and Its Implications for the Formation of Rare Earth Deposits. Acta Geologica Sinica (English Edition), 10.1111/1755-6724.14795.
[42] Wan Y., Wang X*, Chou I-M.*, Li X. (2021) Role of sulfate in the transport and enrichment of REE in hydrothermal systems. Earth and Planetary Science Letters, 569: article no. 117068.
[41] Yu Y., Hu W.*, Chou I-M., Jiang L., Wan Y., Li Y., Xin Y., Wang X.* (2021) Species of sulfur in sour gas reservoir: Insights from in situ Raman spectroscopy of S-H2O-CH4-H2O system and its subsystems from 20 to 250 C. Geofluids, 2021: 6658711
[40] Qiu Y., Zhang R., Chou I-M., Wang X.*, Hu W., Zhang W., Lu J., Li G., Li Z. (2021) Boron-rich ore-forming fluids in hydrothermal W-Sn deposits from South China: insights from in situ Raman spectroscopic characterization of fluid inclusions. Ore Geology Reviews, 132: 104048 https://doi.org/10.1016/j.oregeorev.2021.104048
[39] Xie D., Yao S.*, Cao J., Hu W., Wang X., Zhu N. (2021) Diagenetic alteration and geochemical evolution during sandstones bleaching of deep red-bed induced by methane migration in petroliferous basins. Marine and Petroleum Geology, 127: 104940
[38] Yang S., Hu W.*, Wang X. (2021) Mechanism and implications of upwelling from the late Ordovician to early Silurian in the Yangtze region, South China. Chemical Geology, 565: 120074. DOI:10.1016/j.chemgeo.2021.120074
[37] Kang X., Hu W., Tan J., Li Z., Xiang B., Wang J., Wang X. (2021) Hydrogen isotopic responses to thermochemical oxidation of light hydrocarbon gases in deep clastic reservoirs of the Junggar Basin, China. Chemical Geology, 563: 120052.
[36] Sun F., Hu W., Wu H., Fu B., Wang X., Tang Y., Cao J., Yang S., Hu Z. (2021) Two-stage mineral dissolution and precipitation related to organic matter degradation: Insights from in situ C–O isotopes of zoned carbonate cements. Marine and Petroleum Geology, 124: article no. 104812
[35] Wang X.*, Wan Y., Chou I-M. (2021) Fate of sulfate in seafloor hydrothermal systems: Insights from in situ observation of the liquid-liquid phase separation in hydrothermal fluids. Solid Earth Sciences, https://doi.org/10.1016/j.sesci.2020.12.001
[34] Wan Y., Bourdet J., Hu W., Kang X., Heath C., Qiu Y., Gao W., Wang X*. (2021) Experimental investigation on the thermochemical oxidation of n-alkane and alcohol compounds by MnO2 and Fe2O3 at temperatures up to 325 C. Chemical Geology, 559: article no. 119982.
[33] Sun F., Hu W.*, Wang X., Cao J., Fu B., Wu H., Yang S. (2021) Methanogen microfossils and methanogenesis in Permian lake deposits. Geology, 49: 13-18.
[32] Wang X.*, Qiu Y., Chou I-M., Zhang R., Li G., Zhong R. (2020) Effects of pH and salinity on the hydrothermal transport of tungsten: Insights from in situ Raman spectroscopic characterization of K2WO4-NaCl-HCl-CO2 solutions at temperatures up to 400 C. Geofluids, article ID 2978984, p1-12
[31] Qiu Y., Yang Y., Wang X.*, Wan Y., Hu W., Lu J., Tao G., Li Z., Meng F. (2020) In situ Raman spectroscopic quantification of aqueous sulfate: Experimetal calibration and application to natural fluid inclusions. Chemical Geology, 533: article no. 119447.
[30] Wang X.*, Qiu Y., Lu J., Chou I-M., Zhang W., Li G., Hu W., Li Z., Zhong R.* (2020) In situ Raman spectroscopic investigation of the hydrothermal speciation of tungsten: Implications for the ore-forming process. Chemical Geology, 532: article no. 119299.
[29] Wang L., Hu W.*, Wang X.*, Cao J., Yao S. (2020) Halogens (Cl, Br, I) geochemistry in Middle Triassic carbonates: Implications for salinity and diagenetic alteration of I/(Ca + Mg) ratios. Chemical Geology, 533: article no. 119444.
[28] Qiu Y., Wang X.-L.*, Liu X., Cao J., Liu Y.-F., Xi B.-B., Gao W.-L. (2020) In situ Raman spectroscopic quantification of CH4-CO2 mixture: application to fluid inclusions hosted in quartz veins from the Longmaxi shales in Sichuan Basin, southwestern China. Petroleum Science, 17: 23 - 25 (Cover article).
[27] Chang C.*, Hu W., Wang X., Huang K.-J., Yang A., Zhang X. (2019) Nitrogen isotope evidence for an oligotrophic shallow ocean during the Cambrian Stage 4. Geochim. Cosmochim. Acta, 257: 49 - 67.
[26] Yang S., Hu W.*, Wang X., Jiang B., Yao S., Sun F., Huang Z., Zhu F. (2019) Duration, evolution, and implications of volcanic activity across the Ordovician-Silurian transition in the Lower Yangtze region, South China. Earth Planet. Sci. Lett., 518: 13 - 25.
[25] Hu W.-X., Kang X., Cao J., Wang X.-L., Fu B., Wu H.-G. (2018) Thermochemical oxidation of methane induced by high-valence metal oxides in a sedimentary basin. Nature Commumications, 2018(9): 5131.
[24] Hu W.*, Wang X., Zhu D., You D., Wu H. (2018) An overview of types and characterization of hot fluids associated with reservoir formation in petroliferous basins. Energy Exploration & Exploitation, 36: 1359 – 1375.
[23] Chang C., Hu W., Fu Q., Cao J., Wang X., Wan Y., Yao S. (2018) Characteristics and formation processes of (Ba, K, NH4)-feldspar and cymrite from a lower Cambrian black shale sequence in Anhui Province, South China. Mineralogical Magazine, DOI: https://doi.org/10.1180/minmag.2017.081.017.
[22] Wang X.*, Song Y., Chou I-M.*, Qiu Y. (2018) Raman spectroscopic characterization of cracking and hydrolysis of n-pentane and n-octadecane at 300 - 375 C with geological implications. Energy Exploration & Exploitation, doi: 10.1177/0144598717748762.
[21] Chang C., Hu W., Wang X., Yu H., Yang A., Cao J., Yao S. (2017) Carbon isotope stratigraphy of the lower to middle Cambrian on the eastern Yangtze Platform, South China. Palaeogeography, Palaeoclimatology, Palaeoecology 479, 90-101
[20] Wu H., Hu W., Tang Y., Cao J., Wang X., Wang Y., Kang X. (2017) The impact of organic fluids on the carbon isotopic compositions of carbonate-rich reservoirs: case study of the Lucaogou Formation in the Jimusaer Sag, Junggar Basin, NW China. Marine and Petroleum Geology 85, 136-150.
[19] Wan Y.,Wang X.*, Chou I-M., Hu W., Zhang Y., and Wang X. (2017) An Experimental Study of the Formation of Talc through CaMg(CO3)2–SiO2–H2O Interaction at 100–200°C and Vapor-Saturation Pressures. Geofluids, 3942826, 1-14. doi:10.1155/2017/3942826.
[18] Wan Y., Wang X.*, Hu W., Chou I-M., Wang X., Chen Y., Xu Z. (2017) In situ optical and Raman spectroscopic observations of the effects of pressure and fluid composition on liquid–liquid phase separation in aqueous cadmium sulfate solutions (400 C, 50 MPa) with geological and geochemical implications. Geochimica et Cosmochimica Acta 211, 133-152.
[17] Wang X.*, Wang X., Chou I-M., Hu W., Wan Y., and Li Z. (2017) Properties of lithium under hydrothermal conditions revealed by in situ Raman spectroscopic characerization of Li2O-SO3-H2O(D2O) systmes at temperatures up to 420 C. Chemical Geology 451, 104-115.
[16] Wang X., Wang X.*, Hu W., Wan Y., Cao J., Lv C., Wang R., Cui M. (2017) Supercritical CO2-involved water-rock interactions at 85 C and partial pressures of 10-20 MPa: Sequestration and enhanced oil recovery. Energy Exploration & Exploitation, 35(2): 237-258.
[15] Wang X.*, Wan Y., Hu W., Chou I-M., Cao J., Wang X., Wang M. and Li Z. (2016) In situ observations of liquid–liquid phase separation in aqueous ZnSO4 solutions at temperatures up to 400° C: Implications for Zn2+–SO42− association and evolution of submarine hydrothermal fluids. Geochimica et Cosmochimica Acta 181, 126-143.
[14] Wang X.*, Chou I.M., Hu W., Yuan S., Liu H., Wan Y. and Wang X. (2016) Kinetic inhibition of dolomite precipitation: Insights from Raman spectroscopy of Mg2+–SO42− ion pairing in MgSO4/MgCl2/NaCl solutions at temperatures of 25 to 200° C. Chemical Geology 435, 10-21.
[13] Wang X.*, Wan Y., Hu W., Chou I-M., Cai S., Lin N., Zhu Q. and Li Z., (2016) Visual and in situ Raman spectroscopic observations of the liquid–liquid immiscibility in aqueous uranyl sulfate solutions at temperatures up to 420° C. The Journal of Supercritical Fluids 112, 95-102.
[12] Wu H., Hu W., Cao J., Wang X., Wang X., Liao Z. (2016) A unique lacustrine mixed dolomitic-clastic sequence for tight oil reservoir within the middle Permian Lucaogou Formation of the Junggar Basin, NW China: Reservoir characteristics and origin. Marine and Petroleum Geology 76, 115-132.
[11] Chang C., Hu W., Fu Q., Cao J., Wang X. and Yao S. (2016) Characterization of trace elements and carbon isotopes across the Ediacaran-Cambrian boundary in Anhui Province, South China: Implications for stratigraphy and paleoenvironment reconstruction. Journal of Asian Earth Sciences 125, 58-70.
[10] Liao Z., Hu W., Cao J., Wang X., Yao S. and Wan Y. (2016) Permian–Triassic boundary (PTB) in the Lower Yangtze Region, southeastern China: A new discovery of deep-water archive based on organic carbon isotopic and U–Pb geochronological studies. Palaeogeography, Palaeoclimatology, Palaeoecology 451, 124-139.
[9] Liao Z., Hu W., Cao J., Wang X., Yao S., Wu H. and Wan Y. (2016) Heterogeneous volcanism across the Permian–Triassic Boundary in South China and implications for the Latest Permian Mass Extinction: New evidence from volcanic ash layers in the Lower Yangtze Region. Journal of Asian Earth Sciences 127, 197-210
[8] Wan Y., WangX.*, Hu W. and Chou I-M. (2015) Raman Spectroscopic Observations of the Ion Association between Mg2+ and SO42– in MgSO4-Saturated Droplets at Temperatures of ≤ 380° C. The Journal of Physical Chemistry A 119, 9027-9036.
[7] Wang L., Hu W.*, Wang X., Cao J., Chen Q., Seawater normalized REE patterns of dolomite in Geshan and Panlongdong sections, China: Implications for tracing dolomitization and diagenetic fluids, Marine and Petroleum Geology, 2014, 56: 63-73
[6] Yuan S., Chou I.-M., Burruss R.C., Wang X., and Li J. (2013) Disproportionation and thermochemical sulfate reduction reactions in S-H2O-CH4 and S-D2O-CH4 systems from 200 to 300 C. Geochimica et Cosmochimica Acta 118, 263-275.
[5] Wang X.*, Hu W., and Chou I.-M. (2013) Raman spectroscopic characterization on the OH stretching bands in NaCl-Na2CO3-Na2SO4-CO2-H2O systems: Implications for the measurement of chloride concentrations in fluid inclusions. Journal of Geochemical Exploration 132, 111-119.
[4] Wang X.*, Chou I.-M., Hu W., and Burruss R.C. (2013) In-situ observations of liquid-liquid phase separation in aqueous MgSO4 solutions. Geochimica et Cosmochimica Acta103, 1-10.
[3] Wang X.*, Chou I.-M., Hu W., Burruss R.C., Sun Q. and Song Y. (2011) Raman spectroscopic measurements of CO2 density: Experimental calibration with high-pressure optical cell (HPOC) and fused silica capillary capsule (FSCC) with application to fluid inclusion observations. Geochimica et Cosmochimica Acta75, 4080-4093.
[2] Wang X., Hu W., Yao S., Chen Q. and Xie X. (2011) Carbon and strontium isotopes and global correlation of Cambrian Series 2-Series 3 carbonate rocks in the Keping area of the northwestern Tarim Basin, NW China. Marine and Petroleum Geology28, 992-1002.
[1] Wang X.,Jin Z., Hu W., Zhang J., Qian Y., Zhu J. and Li Q. (2009) Using in situ REE analysis to study the origin and diagenesis of dolomite of Lower Paleozoic, Tarim Basin. Science in China Series D-Earth Sciences52, 681-693.
(B) 中文核心
[25] 楊源顯, 陳強路, 丘靨, 尤東華, 王小林* . 方解石與含硅流體的水-巖反應實驗及其對“硅化”碳酸鹽巖儲層成因的啓示. 高校地質學報, 2021, 27(2): 218 - 228.
[24] 丘靨,王小林*,陸建軍,胡文瑄,萬野,高婉露,李真. 基於原位拉曼光譜分析揭示熱液條件下鎢的遷移方式. 地球化學, 2020, 49(4): 435-449.
[23] 高婉露, 王小林*, 丘靨, 席斌斌, 楊源顯, 鄭建帆, 曾世豪, 張婧玥, 李真. C-H-O-N體系揮發分的拉曼定量分析: 壓力、温度和流體組成的影響. 地球化學, 2020, 49(2): 121-140
[22] 劉顯, 陳強路, 王小林*,丘靨, 楊源顯. 方解石晶體定向性對水的拉曼光譜影響的實驗評估—天然包裹體鹽度的測定. 南京大學學報(自然科學版), 2020, 56(3): 297-307
[21] 楊源顯, 王小林*, 席斌斌, 丘靨, 高婉露, 萬野, 李真. 應用拉曼光譜定量分析流體中硫酸鹽質量摩爾濃度: 內標選擇和流體組分對分析結果的影響. 地球化學, 2019, 48(4): 403 - 419.
[20] 王小林*, 萬野, 胡文瑄, 尤東華, 曹劍, 朱東亞, 李真 . 白雲石與富硅流體的水—巖反應實驗及其儲層地質意義. 地質論評, 2017, 63(6): 1639-1652.
[19] 王曉宇, 王小林*, 萬野, 胡文瑄. 一種新的熱台温度校準方法: 硫酸鹽—水體系液—液相分離原位觀測. 地球化學, 2017, 46(4), 319-332.
[18] 王小林*, 胡文瑄, 張軍濤, 朱井泉, 萬野.塔里木盆地和田1井中寒武統膏岩層段發現原生白雲石, 地質論評, 2016, 62(2) : 419-433
[17] 廖志偉, 胡文瑄, 王小林, 曹劍, 姚素平和萬野. 下揚子PTB界線深水相區粘土巖的火山成因研究及對LPME的指示意義. 地質學報90(4), 785-800.
[16] 胡文瑄*,朱井泉,王小林,由雪蓮,何凱,塔里木盆地柯坪地區寒武系微生物白雲岩特徵、成因及意義,石油與天然氣地質,2014,35(6): 860-869
[15] 王利超,胡文瑄*,王小林,下揚子宜興葛山三疊系周衝村組白雲岩化過程及元素地球化學響應,地球化學,2014,43(3): 255-266
[14] 張軍濤*,胡文瑄,王小林,塔里木盆地寒武系鞍狀白雲石孔隙充填物差異與成因,沉積學報,2013,32(2): 253-259
[13] 王小林,胡文瑄,李慶,朱井泉. (2011) 塔里木盆地蓬萊壩剖面寒武系第二統-第三統界線處碳同位素負異常及其地質意義.地質論評 57(1), 16-23.
[12] 張軍濤,胡文瑄,王小林,錢一雄,吳世祥. (2011) 塔里木盆地西北緣寒武系中熱水白雲石團塊特徵及其成因研究. 地質學報85, 234-245.
[11] 王小林,胡文瑄,陳琪,李慶,朱井泉,張軍濤. (2010) 塔里木盆地柯坪地區上震旦統藻白雲岩特徵及其成因機理.地質學報 84, 1479-1494.
[10] 李慶,胡文瑄,張軍濤,王小林,朱井泉. (2010) 塔里木盆地西北緣中寒武統硅質岩特徵與形成環境. 礦物學報 30, 293-303.
[9] 胡文瑄,陳琪,王小林,曹劍. (2010) 白雲岩儲層形成演化過程中不同流體作用的稀土元素判別模式. 石油與天然氣地質31, 810-818.
[8] 王小林,胡文瑄,錢一雄,張軍濤,謝小敏,李慶. (2009) 塔里木盆地柯坪地區中寒武統藻白雲岩去白雲岩化研究.礦物學報 29, 56-62.
[7] 謝小敏,胡文瑄,王小林,錢一雄,張軍濤,曹劍,李慶. (2009) 新疆柯坪地區寒武紀-奧陶紀碳酸鹽巖沉積旋迴的碳氧同位素研究.地球化學38, 75-88.
[6] 吳仕強,朱井泉,胡文瑄,張軍濤,王小林,蘇永斌. (2009) 塔里木盆地寒武系-奧陶系白雲岩稀土元素特徵及其成因意義. 現代地質23, 638-647.
[5] 王小林,胡文瑄,張軍濤,錢一雄,朱井泉,吳仕強. (2008) 白雲岩物質組分與結構對微孔儲集體系形成的制約-以塔里木盆地下古生界白雲岩為例。天然氣地球科學 19(3), 320-326.
[4] 張軍濤,胡文瑄,錢一雄,王小林,謝小敏. (2008) 塔里木盆地白雲岩儲層類型劃分、測井模型及其應用.地質學報82, 380-386.
[3] 張學豐,胡文瑄,張軍濤,王小林,謝小敏. (2008) 塔里木盆地下奧陶統白雲岩化流體來源的地球化學分析.地學前緣15, 80-89.
[2] 吳仕強,朱井泉,王國學,胡文瑄,張軍濤,王小林. (2008) 塔里木盆地寒武-奧陶系白雲岩結構構造類型及其形成機理. 岩石學報24, 1390-1400.
[1] 張軍濤,胡文瑄,錢一雄,王小林,朱井泉,張洪安,蘇娟,吳仕強. (2008) 塔里木盆地中央隆起區上寒武統-下奧陶統白雲岩儲層中兩類白雲石充填物:特徵與成因. 沉積學報26, 957-966. [1] 

王小林學術會議

[16] Wang X (2017) In situ Raman spectroscopic observation of water-hydrocarbon-mineral interactions. Invited talk in International Forum in Organic-Inorganic Interaction During Hydrocarbon Accumulation, Beijing.
[15] 王小林 (2017) 液—液不混溶與元素遷移、富集. 口頭報告, 固體地球科學重點實驗室聯盟2017年度聯合學術委員會, 北京.
[14] 王小林 (2017) 富硅流體與白雲石的水—巖反應實驗及其儲層地質意義. 口頭報告, 第六屆全國沉積學大會, 南京.
[13] 王小林, 胡文瑄, 萬野, 王曉宇 (2016) 熱液流體液—液不混溶及其地質意義. 口頭報告, 第十八屆全國包裹體及流體學術研討會, 成都.
[12] 王小林 (2014) 硫酸鹽—水體系高温相行為原位觀測及意義. Invited talk. 三亞.
[11] 王小林, 胡文瑄, I-Ming Chou (2013) MgSO4-H2O體系高温相行為及離子絡合作用原位觀測與地質意義. 口頭報告, 第七屆世界華人地質科學研討會, 成都.
[10] 王小林 (2012) 流體中Mg2+與SO42-的絡合形式及其對白雲石成因的啓示. 口頭報告, 第十七屆包裹體及地質流體學術研討會, 杭州.
[9] 王小林, 胡文瑄, 王利超, 張軍濤 (2011)塔里木盆地震旦系—寒武系白雲岩微生物成因及意義. 口頭報告, 白雲岩成因及油氣儲集層研討會, 北京.
[8] Wang X., Chou I-M., Wan Y. (2017) Effect of pressure on liquid-liquid phase separation of aqueous sulfate solution observed in fused silica capillary tubes at elevated temperatures. Goldschmidt 2017, 2017001495.
[7] Wang X., Hu W., Xie X. (2010) Carbon, oxygen and strontium isotopic compositions of Lower to Middle Cambrian carbonates in the northwestern Tarim Basin, China. Geochimica et Cosmochimica Acta 74, A1108.
[6] Hu W., Wang X., Li Q. (2010) The primary dolomite of microbial origin in the Late Neoproterozoic algal dolomite, Tarim Basin, China. Geochimica et Cosmochimica Acta 74, A426.
[5] Zhang J., Hu W., Qian Y., Wang X., Zhu J. (2008) Petrography, geochemistry and origin of cement dolomite in the Lower Paleozoic dolomite of the Central uplift, Tarim Basin. Geochimica et Cosmochimica Acta 72, A15.
[4] Wang X.L., Hu W.X., Zhang W.L., Zhang J.T. (2007) The composition and texture constraints on micro-porosities of dolomite reservoirs, Tarim Basin, NW China. Geochimica et Cosmochimica Acta71, A1087.
[3] Hu W., Xie X., Zhang J., Wang X. (2007) Oxygen and Carbon isotope composition and implication of Early Palaeozoic dolomites in Keping, Tarim Basin. Geochimica et Cosmochimica Acta71, A421.
[2] Zhang J., Hu W., Qian Y., Wang X., Cao J., Zhu J., Li Q., Xie X. (2009) Formation of saddle dolomites in Upper Cambrian carbonates, western Tarim Basin (northwest China): Implications for fault-related fluid flow. Marine and Petroleum Geology26, 1428-1440.
[1] Zhang X., Hu W., Jin Z., Zhang J., Qian Y., Zhu J., Zhu D., Wang X., Xie X. (2008) REE compositions of Lower Ordovician dolomites in Central and North Tarim Basin, NW China: A potential REE proxy for ancient seawater. Acta Geologica Sinica82, 610-621. [1] 
參考資料