複製鏈接
請複製以下鏈接發送給好友

無機化學

(化學學科)

鎖定
無機化學是研究無機化合物的化學,是化學領域的一個重要分支。通常無機化合物與有機化合物相對,指多數不含C-H鍵的化合物,但是,碳氧化物、碳硫化物氰化物硫氰酸鹽碳酸碳酸鹽碳硼烷、羰基金屬等都屬於無機化學研究的範疇(實際上是將“由無機化學研究的物質”定義為“無機物)。但這二者界限並不嚴格,之間有較大的重疊,有機金屬化學即是一例。
中文名
無機化學
外文名
Inorganic Chemistry
研    究
無機化合物的化學
類    型
化學領域的一個重要分支
相    對
有機化學
學科代碼
15015 [1-2] 

無機化學學科簡介

無機化學是除碳氫化合物及其衍生物外,對所有元素及其化合物的性質和它們的反應進行實驗研究理論解釋的科學,是化學學科中發展最早的一個分支學科。
過去認為無機物質即無生命的物質,如岩石、土壤,礦物、水等;而有機物質則是由有生命的動物和植物產生,如蛋白質、油脂、澱粉、纖維素、尿素等。1828年德意志化學家維勒從無機物氰酸銨製得尿素,從而破除了有機物只能由生命力產生的迷信,明確了這兩類物質都是由化學力結合而成。現這兩類物質是按研究領域不同而劃分的(所以常常會出現某些含有碳鏈、有機配體的物質被劃分為無機物的情況)。化學還有其它細分類。
具有複雜結構的大分子量無機分子 具有複雜結構的大分子量無機分子
儘管無機物種類不足已知物質的10%,但已知的化學反應卻以無機為主,這是因為有機物雖然種類多於無機物但涉及的元素遠少於無機物,導致物質類型遠少於無機物,最終導致有機反應遠少於無機反應(很多無機反應甚至只會在一種分子上發生,而不具備有機反應那樣的普適性)。
生物無機化學 生物無機化學

無機化學發展簡史

原始人類即能辨別自然界存在的無機物質的性質而加以利用,後來偶然發現自然物質能變化成性質不同的新物質,於是加以仿效,這就是古代化學工藝的開始。
如至少在公元前6000年,中國原始人即知燒粘土製陶器,並逐漸發展為彩陶、白陶釉陶和瓷器。公元前5000年左右,人類發現天然銅性質堅韌,用作器具不易破損。後又觀察到銅礦石孔雀石(鹼式碳酸銅)與燃熾的木炭接觸而被分解為氧化銅,進而被還原為金屬銅,經過反覆觀察和試驗,終於掌握以木炭還原銅礦石的鍊銅技術。以後又陸續掌握煉錫、煉鋅、煉鎳等技術。中國在春秋戰國時代即掌握了從鐵礦冶鐵和由鐵鍊鋼的技術,公元前2世紀中國發現鐵能與銅化合物溶液反應產生銅,這個反應成為後來生產銅的方法之一,此法也叫“濕法鍊銅”。
化合物方面,在公元前17世紀的殷商時代即知食鹽(氯化鈉)是調味品,苦鹽硫酸鎂)的味苦。公元前五世紀已有琉璃(聚硅酸鹽)器皿。公元七世紀,中國即有焰硝(硝酸鉀)、硫黃和木炭做成火藥的記載。明朝宋應星在1637年刊行的《天工開物》中詳細記述了中國古代手工業技術,其中有陶瓷器、銅、鋼鐵、食鹽、焰硝、石灰、紅礬黃礬、等幾十種無機物生產過程。由此可見,在化學科學建立前,人類已掌握了大量無機化學的知識和技術。
古代的煉丹術是化學科學的先驅,煉丹術就是企圖將丹砂(硫化汞)之類藥劑變成黃金,並煉製出長生不老之丹的方術。中國金丹術始於公元前2、3世紀的秦漢時代。公元142年中國金丹魏伯陽所著的《周易參同契》是世界上最古的論述金丹術的書,約在360年有葛洪著的《抱朴子》,這兩該書記載了60多種無機物和它們的許多變化。約在公元8世紀,歐洲金丹術興起,後來歐洲的金丹術逐漸演進為近代的化學科學,而中國的金丹術則未能進一步演進。
金丹家關於無機物變化的知識主要從實驗中得來。他們設計製造了加熱爐反應室蒸餾器研磨器等實驗用具。金丹家所追求的目的雖屬荒誕,但所使用的操作方法和積累的感性知識,卻成為化學科學的前驅。
由於最初化學所研究的多為無機物,所以近代無機化學的建立就標誌着近代化學的創始。建立近代化學貢獻最大的化學家有三人,即英國的玻意耳、法國的拉瓦錫和英國的道爾頓。
波義耳在化學方面進行過很多實驗,如磷、氫的製備,金屬在酸中的溶解以及硫、氫等物的燃燒。他從實驗結果闡述了元素和化合物的區別,提出元素是一種不能分出其他物質的物質。這些新概念和新觀點,把化學這門科學的研究引上了正確的路線,對建立近代化學作出了貢獻。
拉瓦錫採用天平作為研究物質變化的重要工具,進行了硫、磷的燃燒,錫、汞等金屬在空氣中加熱的定量實驗,確立了物質的燃燒是氧化作用的正確概念,推翻了盛行百年之久的燃素説。拉瓦錫在大量定量實驗的基礎上,於1774年提出質量守恆定律,即在化學變化中,物質的質量不變。1789年,在他所著的《化學概要》中,提出第一個化學元素分類表和新的化學命名法,並運用正確的定量觀點,敍述當時的化學知識,從而奠定了近代化學的基礎。由於拉瓦錫的提倡,天平開始普遍應用於化合物組成和變化的研究。
1799年,法國化學家普魯斯特歸納化合物組成測定的結果,提出定比定律,即每個化合物各組分元素的重量皆有一定比例。結合質量守恆定律,1803年道爾頓提出原子學説,宣佈一切元素都是由不能再分割、不能毀滅的稱為原子的微粒所組成。並從這個學説引伸出倍比定律,即如果兩種元素化合成幾種不同的化合物,則在這些化合物中,與一定重量的甲元素化合的乙元素的重量必互成簡單的整數比。這個推論得到定量實驗結果的充分印證。原子學説建立後,化學這門科學開始宣告成立。
19世紀30年代,已知的元素已達60多種,俄國化學家門捷列夫研究了這些元素的性質,在1869年提出元素週期律:元素的性質隨着元素原子量的增加呈週期性的變化。這個定律揭示了化學元素的自然系統分類元素週期表就是根據週期律將化學元素按週期和族類排列的,週期律對於無機化學的研究、應用起了極為重要的作用。
自然界已有的元素共109種,其中94種存在於自然界,15種是人造的。代表化學元素的符號大都是拉丁文名稱的縮寫。中文名稱有些是中國自古以來就熟知的元素,如金、鋁、銅、鐵、錫、硫、砷、磷等;有些是由外文音譯的,如鈉、錳、鈾、氦等;也有按意新創的,如氫(輕的氣)、溴(臭的水)、鉑(白色的金,同時也是外文名字的譯音)等。
週期律對化學的發展起着重大的推動作用。根據週期律,門捷列夫曾預言當時尚未發現的元素的存在和性質。週期律還指導了對元素及其化合物性質的系統研究,成為現代物質結構理論發展的基礎。系統無機化學一般就是指按週期分類對元素及其化合物的性質、結構及其反應所進行的敍述和討論。
19世紀末的一系列發現,開創了現代無機化學;1895年倫琴發現X射線;1896年貝克勒爾發現鈾的放射性;1897年湯姆遜發現電子;1898年,居里夫婦發現釙和鐳的放射性。20世紀初盧瑟福和玻爾提出原子是由原子核和電子所組成的結構模型,改變了道爾頓原子學説的原子不可再分的觀念。
1916年科塞爾提出電價鍵理論,路易斯提出共價鍵理論,圓滿地解釋了元素的原子價和化合物的結構等問題。1924年,德布羅意提出電子等物質微粒具有波粒二象性的理論;1926年,薛定諤建立微粒運動的波動方程;次年,海特勒和倫敦應用量子力學處理氫分子,證明在氫分子中的兩個氫核間,電子幾率密度有顯著的集中,從而提出了化學鍵的現代觀點。
此後,經過幾方面的工作,發展成為化學鍵價鍵理論分子軌道理論配位場理論。這三個基本理論是現代無機化學的理論基礎。

無機化學研究內容

無機化學在成立之初,其知識內容已有四類,即事實、概念、定律和學説。
用感官直接觀察事物所得的材料,稱為事實;對於事物的具體特徵加以分析、比較、綜合和概括得到概念,如元素、化合物、化合、化分、氧化、還原、原子等皆是無機化學最初明確的概念;組合相應的概念以概括相同的事實則成定律,例如,不同元素化合成各種各樣的化合物,總結它們的定量關係得出質量守恆、定比、倍比等定律;建立新概念以説明有關的定律,該新概念又經實驗證明為正確的,即成學説。例如,原子學説可以説明當時已成立的有關元素化合重量關係的各定律。
化學知識的這種派生關係表明它們之間的內在聯繫。定律綜合事實,學説解釋並貫串定律,從而把整個化學內容組織成為一個有系統的科學知識。人們認為近代化學是在道爾頓創立原子學説之後建立起來的,因為該學説把當時的化學內容進行了科學系統化。
系統的化學知識是按照科學方法進行研究的。科學方法主要分為三步:
蒐集事實 蒐集的方法有觀察和實驗。實驗是控制條件下的觀察。化學研究特別重視實驗,因為自然界的化學變化現象都很複雜,直接觀察不易得到事物的本質。例如,鐵生鏽是常見的化學變化,若不控制發生作用的條件,如水氣、氧、二氧化碳、空氣中的雜質和温度等就不易瞭解所起的反應和所形成的產物。
無論觀察或實驗,所蒐集的事實必須切實準確。化學實驗中的各種操作,如沉澱、過濾、灼燒、稱重、蒸餾、滴定、結晶、萃取等等,都是在控制條件下獲得正確可靠事實知識實驗手段。正確知識的獲得,既要靠熟練的技術,也要靠精密的儀器,近代化學是由天平的應用開始的。通過對每一現象的測量,並用數字表示,才算對此現象有了確切知識。
建立定律 古代化學工藝金丹術積累的化學知識雖然很多,但不能稱為科學。要知識成為科學,必須將蒐集到的大量事實加以分析比較,去粗取精,由此及彼地將類似的事實歸納成為定律。例如普魯斯特注意化合物的成分,他分析了大量的、採自世界各地的、天然的和人工合成的多種化合物,經過八年的努力後發現每一種化合物的組成都是完全相同的,於是歸納這類事實,提出定比定律
創立學説 化學定律雖比事實為少,但為數仍多,而且各自分立,互不相關。化學家要求理解各定律的意義及其相互關係。道爾頓由表及裏地提出物質由原子構成的概念,創立原子學説,解釋了關於元素化合和化合物變化的重量關係的各個定律,並使之連貫起來,從而將化學知識按其形成的層次組織成為一門系統的科學。
由於各學科的深入發展和學科間的相互滲透,形成許多跨學科的新的研究領域。無機化學與其他學科結合而形成的新興研究領域很多,例如生物無機化學就是無機化學與生物化學結合的邊緣學科
現代物理實驗方法如:X射線中子衍射電子衍射磁共振、光譜、質譜、色譜等方法的應用,使無機物的研究由宏觀深入到微觀,從而將元素及其化合物的性質和反應同結構聯繫起來,形成現代無機化學。現代無機化學就是應用現代物理技術及物質微觀結構的觀點來研究和闡述化學元素及其所有無機化合物的組成、性能、結構和反應的科學。無機化學的發展趨向主要是新型化合物的合成和應用,以及新研究領域的開闢和建立。

無機化學最新進展

陳榮梁文平
中國無機化學在國家自然科學基金及其它基礎項目的支持下,基礎研究取得突出進展,成果累累,一批中青年專家的工作脱穎而出。有的專家在科研成果轉化、產業化方面作出了突出成績;有的專家在國際高水平的專業雜誌Science,Accounts of Chemical Reserch,Angew.Chem.Int.ed.,J. Am. Chem. Soc.上發表了一批有影響的科學論文。以化學著名期刊Angew. Chem. Int. Ed.和J. Am. Chem. Soc.為例,據不完全統計,近10年來,大陸學者在Angew. Chem. Int. Ed. 上共發表論文44篇,其中無機化學領域的專家發表18篇,佔41%。特別是近兩年,大陸學者在Angew. Chem. Int. Ed. 上共發表論文30篇,無機化學領域的專家發表16篇,佔53%,增長迅速;近10年大陸學者在J. Am. Chem. Soc. 上發表論文53篇,無機化學學者發表11篇,佔20%;有機化學領域的專家,在Angew. Chem. Int. Ed. 上共發表論文8篇;在J. Am. Chem. Soc. 上發表論文14篇,也表現出良好的發展勢頭。我們相信在國家自然科學基金的資助下,化學學科能夠繼續取得基礎研究的突破,開創新領域,開展國際領先的獨創性研究工作。無機化學的在以下幾個方面取得了令人矚目的成績:
1.中國科技大學錢逸泰謝毅研究小組在水熱合成工作基礎上在有機體系中設計和實現了新的無機化學反應,在相對低的温度製備了一系列非氧化物納米材料溶劑熱合成原理與水熱合成類似,以有機溶劑代替水,在密封體系中實現化學反應。他們在苯中280℃下將GaCl3和Li3N反應制得納米GaN的工作發表在Science上,審稿人評價為“文章報道了兩個激動人心的研究成果:在非常低的温度下苯熱製備了結晶GaN;觀察到以前只在超高壓下才出現的亞穩的立方岩鹽相。……”文章已被Science 等刊物引用60次。在甲苯中溶劑熱共還原製成InAs,文章發表在J. Am. Chem. Soc.上;在KBH4存在下,在毒性低的單質As和InCl3反應制得納米InAs,文章發表在Chem. Mater.上;在700℃下將CCl4和金屬Na發生類似Wurtz反應制成金剛石,該工作在Science上發表不久就被美國《化學與工程新聞》評價為“稻草變黃金”;用溶劑熱合成了一維CdE(E=S,Se,Te),文章發表在Chem. Mater.上;用金屬Na還原CCl4和SiCl4在400℃下製得一維SiC納米棒的工作發表在Appl. Phys. Lett.上,被審稿人認為這是一種“新穎的和非常有趣的合成方法,……將促進該領域更深入的工作”;多元金屬硫族化合物納米材料的溶劑熱合成:如AgMS2 和CuMS2(M=Ga,In)的文章分別發表在Chem. Commum.和Inorg. Chem.;成功地將部分硫族化合物納米材料的溶劑製備降至室温,其中一維硒化物的工作發表在J. Am. Chem. Soc. 和Adv. Mater.上;不定比化合物的製備和亞穩物相的鑑定:如Co9S8等不定比化合物的溶劑熱合成發表在Inorg. Chem.上,岩鹽型GaN亞穩相的高分辨率電鏡鑑定工作發表在Appl. Phys. Lett.上。
2.吉林大學馮守華、徐如人研究組應用水熱合成技術,從簡單的反應原料出發成功地合成出具有螺旋結構的M(4,4'-bipy)2(VO2)2(HPO4)4 (M=Co; Ni)。在這兩個化合物中,PO4四面體和VO4N三角雙錐通過共用氧原子交替排列形成新穎的V/P/O無機螺旋鏈。結構中左旋和右旋的V/P/O螺旋鏈共存。這些左旋和右旋的螺旋鏈嚴格交替,並被M(4,4'-bipy)2結構單元連接,形成開放的三維結構。無機螺旋鏈的形成,歸因於M(4,4'-bipy)2結構單元上的兩個聯吡啶剛性分子分別與兩個相鄰螺旋鏈上的釩原子配位產生的拉力。研究結果發表在Angew. Chem. Int. Ed. 2000,Vol. 39,No. 13,2325-2327。
鑑於在國際上無機水熱合成前沿領域的系統和創新性研究工作,吉林大學無機合成與製備化學國家重點實驗室馮守華教授和徐如人院士2001年應邀為美國化學會《化學研究評述》(Accounts of Chemical Reserch)撰寫綜述論文。綜述題目為“New Materials in Hydrothermal Synthesis” (Acc. Chem. Res.,34(3),239?/FONT>247,2001)。該文從以下七個方面系統地總結了新材料水熱合成化學方面的研究成果:微孔晶體離子導體複合氧化物和複合氟化物;低維磷酸鋁;無機/有機雜化材料;特殊聚集態材料;材料,生命,環境與社會問題
3.南京大學熊仁根遊效曾等在光學活性沸石的組裝及其手性拆分功能研究方面設計和合成具有手性與催化功能的無機-有機雜化的多維結構,他們改性了光學活性的天然有機藥物(奎寧),以它作為配體金屬離子自組裝構成了一個能進行光學拆分(或選擇性的包合S-構型)消旋2-丁醇3-甲基-2-丁醇,拆分率達98%以上的三維多孔類沸石。在成功設計這個類沸石時,我們主要考慮了以下一些因素:負一價陰離子的配體(排除了外部陰離子佔據空洞的可能性);配體具有大量的有機部分增強了疏水性;同時也有親水基團,N、OH等基團共存於一個配體中 這樣配體具有兩性;多個手性中心(4個)。這是第一個能拆分的具有光學活性的類沸石,該工作被認為是非常重要和有意義的工作,發表在Angew. Chem. Int. Ed.,(2001,40,4422-4425)上,並被選為Hot Paper。
4.中國科學院福建物質結構研究所洪茂椿吳新濤等在納米材料和無機聚合物方面的工作有30篇論文發表在國際高水平的刊物如Angew. Chem. Int. Ed.,J. Am. Chem. Soc.,Chem. Eur. J.,Chem. Comm.,Inorg. Chem.上,引起了國內外同行的廣泛重視。
他們在納米金屬分子籠(nanometer-sized metallomolecular cage)的合成,結構和性能研究方面考慮有機橋聯配體與金屬離子的協同作用結構調控,設計合成了一種含有機硫和氮的三齒橋聯配體tpst,其中的吡啶環與中心隔離體通過柔性的硫醚聯結. 通過tpst配體與兩價的鎳、鈀或鉑離子自組裝反應,我們成功地構築了具有Oh對稱的立方體金屬-有機籠子[Ni6(tpst)8Cl12],其籠內體積超過1000?3,可以同時容納多種離子和溶劑分子。該籠子在100° C下穩定並有12個較大的可變的窗口,可以讓小分子進出籠子。這是已測定單晶結構的容量最大的一個金屬-有機籠子( J. Am. Chem. Soc. 2000,122,4819-4820)。
進行了具有大孔洞的新型金屬¾ 有機類分子篩(New type of metal-organic macroporous zeotype) 的合成,結構和性能的研究。這一方面的研究工作主要集中在合成合適的有機配體設計合成孔洞大小和形狀適宜的複合聚合物。他們把tpst 配體和一價的金屬離子進行逐步組裝,製成了一種具有納米級管的一維聚合物[Ag7(tpst)4(ClO4)2(NO3)5]n , 管中可以同時容納離子和小分子。這是一種具有金屬-有機的納米管的一維聚合物。
他們還成功地構築了一個新型的具有納米級孔洞的類分子篩[{Zn4(OH)2(bdc)3}· 4(dmso)2H2O]n,其中孔洞的大小近一納米。骨架的金屬可以是具有催化活性的金屬團簇。把多齒羧酸大配體與稀土金屬過渡金屬離子反應,製成了多種含稀土金屬和過渡金屬且具有大孔洞的一維、二維和三維聚合物,[Gd2Ag2(pydc)4(H2O)4]n [{Gd2Cu3(pydc)6(H2O)12}.4H2O]n ,[{Gd4Cu2(pydc)8 (H2O)12}.4H2O]n ,[{Gd2Zn3(pydc)6(H2O)12}.4H2O]n ,[{Gd4Zn2(pydc)8
金屬納米線和金屬-有機納米板的合成和結構研究。設計合成了一些金屬納米線、金屬-非金屬納米線和金屬有機納米板,應用結構化學研究手段,研究它們的自組裝規律、空間結構、電子結構及其物理化學性能,探索空間結構與性質和性能的關係規律。
5.北京大學高松研究小組在磁分子材料的研究方面取得了突出成果。外磁場依賴的特殊的磁弛豫現象。在水溶液中以1:1:1的摩爾比緩慢擴散K3[M(CN)6] (M = FeIII,CoIII),bpym (2,2’-bipyrimidine) 和Nd(NO3)3,合成了第一例氰根橋聯的4f-3d二維配位高分子[NdM(bpym)(H2O)4(CN)6]× 3H2O,24個原子形成的大六邊形環 分別以頂點和邊相連,構築成獨特的二維拓撲結構。通過對結構相同的兩個化合物的磁性比較研究,確定了NdIII-FeIII間存在弱的鐵磁相互作用。儘管在2K以上未觀察到長程磁有序,零外場下變温交流磁化率也表現出通常的順磁行為,但是,在外磁場(2kOe)存在時交流磁化率表現出慢的磁弛豫現象 與超順磁體自旋玻璃有類似之處。用該體系幾何上的自旋阻挫給予了初步解釋(Angew. Chem. -Int. Ed.,40(2),434-437,2001)。
金屬簇合物為結構單元的超分子組裝。以混合稀土Dy(ClO4)3天冬氨酸的水溶液 調節溶液的pH到大約6.5,合成得到了一個三維開放骨架結構的配位高分子 其孔徑達11.78A。用天冬氨酸這個二元羧酸替代一元氨基羧酸的結果是,在生理pH條件下形成的氨基酸稀土配合物從分立的四核立方烷結構組裝成三維的超立方烷(Angew. Chem.-Int. Edit.,39(20),3644-6,2000)。
氰根橋聯的三維鐵磁體。以以4d金屬離子Ru(III) 穩定的的二氰根配合物[RuIII(acac)2(CN)2]-為“建築塊”與3d金屬離子Mn(II)反應,合成了一個氰根橋聯的類金剛石結構的三維配位高分子。磁性研究表明,Ru-Mn間呈鐵磁性作用,並且在3.6 K 以下表現出長程鐵磁有序。這是第一例含Ru(III)的分子鐵磁體。
緩慢擴散Cu(en)(H2O)2SO4的水溶液到K3[Cr(CN)6]的水-乙醇溶液,得到一個氰根橋聯的結構新穎的三維配位高分子[Cu(EtOH)2][Cu(en)]2[Cr(CN)6]2,磁性研究表明,Cr-Cu間呈鐵磁相互作用,並且在57 K以下表現出長程鐵磁有序。這是第一個結構和磁性表徵的Cr-Cu三維分子磁體(Angew. Chem.-Int. Edit.,40(16),3031-3,2001; J. Am. Chem. Soc.,123,11809-10,2001)。
6.清華大學李亞棟研究組在新型一維納米結構的製備、組裝方面取得了突出的進展。李亞棟課題組首次發現了由具有準層狀結構特性的金屬鉍形成的一種新型的單晶多壁金屬納米管,有關研究成果在美國化學會志上(J. Am. Chem. Soc. 123(40),9904~9905,2001)報道。這是國際上首例由金屬形成的單晶納米管,鉍納米管的發現為無機納米管的形成機理和應用研究提供了新的對象和課題。
他們還設計利用人工合成的有機無機層狀結構作為前驅體合成出金屬單晶納米線和高質量的WS2納米管,並藉助小角X射線衍射高分辨電鏡微結構分析,詳細研究了由層狀前驅體到納米管的層狀捲曲機制,為一維納米線和納米管的合成提供了新的方法和思路。這方面的工作發表在德國應用化學(Angew. Chem. Int. Ed. 41(2),333~335,2002)和美國化學會志(J. Am. Chem. Soc. 124(7),1411~1416,2002)上。
7 .東北師範大學王恩波課題組對多金屬氧簇的研究處於領先地位。在多金屬氧簇晶體設計合成,多金屬氧簇的功能材料方面都取得很好的成就。王恩波課題組的在國際的高端雜誌上發表過多篇論文,如德國應用化學和美國化學會志等,引起了廣泛的關注。
一維氧化物納米線、帶及管由於其廣泛的應用情景而倍受重視。李亞棟等通過液相反應途徑,在較温和的條件下成功地合成了高質量的a 和b二氧化錳納米線和納米棒,同時實現了對產物成相的調控。此外,他們還合成出了單晶MoO3納米帶和鈦酸鹽納米管。這方面的工作部分已發表在美國化學會志(J. Am. Chem. Soc. 124(12),2880~2881,2002)等雜誌上。
無機化學所取得的突出進展主要表現在固體材料化學、配位化學方面,在某種程度上與國際保持同步發展。從傳統的無機化學角度來看,生物無機化學放射化學的研究則相對滯後。在國家自然科學基金委員會政策局、化學部和中國科學院化學部的共同支持下,2002年3月5-7日在深圳舉行了生物無機化學發展戰略研討會會議分析了國內外生物無機化學發展過程和在生命科學化學科學交叉發展相互促進的強大動力和趨勢。中國生物無機化學是在20世紀80年代開始發生發展的,當時落後於國際約10年。在國家自然科學基金委員會十幾年連續支持下,在全體從事生物無機化學研究者的努力下,生物無機化學的研究10年內躍升了三個台階,研究對象從生物小分子配體上升到生物大分子;從研究分離出的生物大分子到研究生物體系;近年來又開始了對細胞層次的無機化學研究,研究水平逐年提高。中國在金屬配合物與生物大分子的相互作用、金屬蛋白結構與功能、金屬離子生物效應的化學基礎,以及無機藥物化學生物礦化方面都有了相對固定的研究方向,研究隊伍日益年輕化。但中國生物無機化學的總體水平與國際水平還有一定差距,究其原因是研究經費投入不足,研究週期較長,但最突出的問題是缺乏傑出的青年研究人才。放射化學的研究也表現出以上特點,其中最重要的也是要扶持年青的研究人才脱穎而出。
參考資料