複製鏈接
請複製以下鏈接發送給好友

氟代脱氧葡萄糖

鎖定
氟代脱氧葡萄糖是2-脱氧葡萄糖的氟代衍生物。通常簡稱為18F-FDGFDG。FDG最常用於正電子發射斷層掃描(PET)類的醫學成像設備:FDG分子之中的選用的是屬於正電子發射型放射性同位素氟-18,從而成為18F-FDG。在向病人(患者,病患)體內注射FDG之後,PET掃描儀可以構建出反映FDG體內分佈情況的圖像。接着,核醫學醫師或放射醫師對這些圖像加以評估,從而作出關於各種醫學健康狀況的診斷。
中文名
氟代脱氧葡萄糖
外文名
Fludeoxyglucose
化學名稱
2-氟-2-脱氧-D-葡萄糖
簡    稱
18F-FDG或FDG
類    別
氟代衍生物
最常用於
正電子發射斷層掃描(PET)類的醫學成像設備

氟代脱氧葡萄糖簡介

氟代脱氧葡萄糖是2-脱氧葡萄糖的氟代衍生物。通常簡稱為18F-FDG [3]  18F-FDG最常用於正電子發射斷層掃描(PET)類的醫學成像設備:18F-FDG分子之中的選用的是屬於正電子發射型放射性同位素氟-18,從而成為18F-FDG。在向病人(患者,病患)體內注射18F-FDG之後,PET掃描儀可以構建出反映18F-FDG體內分佈情況的圖像。接着,核醫學醫師或放射醫師對這些圖像加以評估,從而作出關於各種醫學健康狀況的診斷

氟代脱氧葡萄糖歷史

二十世紀70年代,美國布魯克海文國家實驗室(Brookhaven National Laboratory)的Tatsuo Ido首先完成了18F-FDG的合成。1976年8月,賓夕法尼亞大學的Abass Alavi首次將這種化合物施用於兩名正常的人類志願者的身上。其採用普通核素掃描儀(非PET掃描儀)所獲得的腦部圖像,表明了18F-FDG在腦部的濃聚 [1] 

氟代脱氧葡萄糖作用機理與代謝命運

作為一種葡萄糖類似物,18F-FDG將為如腦、腎臟以及癌細胞等葡萄糖高利用率細胞所攝取。在此類細胞內,磷酸化過程將會阻止葡萄糖以原有的完整形式從細胞之中釋放出來。葡萄糖之中的2位氧乃是後續糖酵解所必需的;因而,18F-FDG與2-脱氧-D-葡萄糖相同,在細胞內無法繼續代謝;這樣,在放射性衰變之前,所形成的18F-FDG-6-磷酸將不會發生糖酵解。結果,18F-FDG的分佈情況就會很好地反映體內細胞對葡萄糖的攝取和磷酸化的分佈情況。
在18F-FDG發生衰變之前,18F-FDG的代謝分解或利用會因為其分子之中2'位上的氟而受到抑制。不過,18F-FDG發生放射性衰變之後,其中的氟將轉變為18O;而且,在從環境當中獲取一個H之後,18F-FDG的衰變產物就變成了葡萄糖-6-磷酸,而其2'位上的標記則變為無害的非放射性“重氧”(heavy oxygen,oxygen-18);這樣,該衰變產物通常就可以按照普通葡萄糖的方式進行代謝 [1] 

氟代脱氧葡萄糖臨牀應用

在PET成像方面,18F-FDG可用於評估心臟肺臟以及腦部的葡萄糖代謝狀況。同時,18F-FDG還在腫瘤學方面用於腫瘤成像。在被細胞攝取之後,18F-FDG將由己糖激酶(在快速生長型惡性腫瘤之中,線粒體型己糖激酶顯著升高)加以磷酸化,併為代謝活躍的組織所滯留,如大多數類型的惡性腫瘤。因此,18F-FDG-PET可用於癌症的診斷、分期和治療監測,尤其是對於霍奇金氏病、非霍奇金氏淋巴瘤、結直腸癌、乳腺癌、黑色素瘤以及肺癌。另外,18F-FDG-PET還已經用於阿爾茲海默病的診斷。
在旨在查找腫瘤或轉移性疾病的體部掃描應用當中,通常是將一劑通常為5至10毫居里,或者説200至400兆貝克勒的18F-FDG溶液迅速注射到正在向病人靜脈之中滴注生理鹽水的管路當中。此前,病人已經持續禁食至少6小時,且血糖水平適當較低。在給予18F-FDG之後,病人必須等候大約1個小時,以便18F-FDG在體內充分分佈,為那些利用葡萄糖的器官和組織所攝取;在此期間,病人必須儘可能減少身體活動,以便儘量減少肌肉對於這種放射性葡萄糖的攝取(當我們所感興趣的器官位於身體內部之時,這種攝取會造成不必要的偽影)。接着,就會將病人置於PET掃描儀當中,進行一次或多次一系列的掃描;這些掃描可能要花費20分鐘直至1個小時的時間每次PET檢查,往往只會對大約體長的四分之一進行成像。 [1] 

氟代脱氧葡萄糖生產與配送手段

醫用迴旋加速器(medical cyclotron)之中用於產生F-18的高能粒子轟擊條件會破壞像脱氧葡萄糖或葡萄糖之類的有機物分子,因此必須首先在迴旋加速器之中製備出氟化物形式的放射性F-18。這可以通過採用氘核轟擊氖-20來完成;但在通常情況下,F-18的製備是這樣完成的:採用質子轟擊富O水(O-enriched water,重氧水),導致O之中發生(p,n)核反應(中子脱出,或者説散裂(spallation)),從而產生出具有放射性核素標記的氫氟酸(hydroF-18luoric acid,HF-18)形式的F-18。接着,將這種不斷快速衰變的F-18(18-氟化物,18-F-18luoride)收集起來,並立即在“熱室(hot cell)(放射性同位素化學制備室)”之中,藉助於一系列自動的化學反應(親核取代反應親電取代反應),將其連接到脱氧葡萄糖之上。之後,採取儘可能最快的方式,將經過放射性核素標記的18F-FDG化合物(F-18的衰變限定其半衰期僅為109.8分鐘)迅速運送到使用地點。為了將PET掃描檢查項目的地區覆蓋範圍拓展到那些距離生產這種放射性同位素標記化合物的迴旋加速器數百公里之遙的醫學分子影像中心,其中可能還會使用飛機空運服務。
最近,用於製備18F-FDG,備有自屏蔽及便攜式化學工作站的現場式迴旋加速器,已經伴隨PET掃描儀落户到了偏遠醫院。這種技術在未來具有一定的前景,有望避免因為要將18F-FDG從生產地點運送到使用地點而造成的忙亂.。 [2] 

氟代脱氧葡萄糖質量保證

氟代脱氧葡萄糖常規性質量檢驗

  • 澄明度
  • pH值
  • 滯留係數
  • 放射化學純度
  • 活度
  • 除菌濾器完整性檢測

氟代脱氧葡萄糖追溯性質量檢驗

  • 無菌試驗
  • 內毒素檢測
  • K2.2.2含量檢測
  • 乙醇含量檢測
  • 乙腈含量檢測 [1] 

氟代脱氧葡萄糖參見

參考資料
  • 1.    Fowler JS, Ido T. Initial and subsequent approach for the synthesis of 18FDG. Semin Nucl Med. 2002, 32 (1): 6–12. PMID 11839070. doi:10.1053/snuc.2002.29270.
  • 2.    Ernesto Bustamante; Peter L. Pedersen. High Aerobic Glycolysis of Rat Hepatoma Cells in Culture: Role of Mitochondrial Hexokinase. Proceedings of the National Academy of Sciences. 1977, 74 (9): 3735. PMID 198801. doi:10.1073/pnas.74.9.3735.
  • 3.    單鴻主編. 肝臟移植影像學[M]. 廣州:廣東科技出版社, 2008:173