複製鏈接
請複製以下鏈接發送給好友

李雲章

(北京工業大學教授, 博士生導師)

編輯 鎖定
本詞條缺少概述图,補充相關內容使詞條更完整,還能快速升級,趕緊來編輯吧!
李雲章,1966年出生,北京工業大學教授、博士生導師。
中文名
李雲章
出生日期
1966年
畢業院校
浙江大學
性    別
李雲章,男,1966年生,教授, 博士生導師,基礎數學學科責任教授,德國《Zentralblatt MATH》評論員;1998年浙江大學數學系博士畢業,獲博士學位,研究方向:小波分析;2004.2---2005.2訪問加拿大麥克瑪斯特大學(McMaster University)數學與統計系;研究領域涉及小波分析與Gabor分析。主持完成和主持在研國家自然科學基金、教育部留學回國人員科研啓動基金、北京市自然科學基金、北京市中青年骨幹教師基金、北京市優秀人才基金、北京市教委基金、北京市留學人員科技活動擇優資助項目等多項國家級和省部級項目。在《J. Funct. Anal.》、《J. Fourier Anal. Appl.》、《J. Math. Phys.》、《J. Math. Anal. Appl.》、《J. Approx. Theory》、《Proc. Amer. Math. Soc.》、《Num. Func. Anal. Optim.》、《Acta Appl. Math.》、《Comm. Pure Appl. Anal.》、《Adv. Comput. Math.》、《Int. J. Wavelets Multiresolut. Inf. Process.》、《Abstr. Appl. Anal.》、《Appl. Math. Comput.》、《Kyoto J. Math..》、《Kodai Math. J.》、《Sci. China Math.》、《Acta. Math. Sinica》等國內外學術期刊發表論文50餘篇, 多篇被SCI收錄。 [1] 
部分SCI論文:
[1] The construction of multivariate periodic wavelet bi-frames. J. Math. Anal. Appl. 412 (2014), no. 2, 852–865. (withHui-Fang Jia)
[2] Rational time-frequency multi-window subspace Gabor frames and their Gabor duals. Sci. China Math. 57 (2014), no. 1,145–160. (with Yan Zhang)
[3] Rational time-frequency Gabor frames associated with periodic subsets of the real line. Int. J. Wavelets Multiresolut. Inf. Process. 12 (2014), no. 2, 1450013, 15 pp. (with Jean-Pierre Gabardo )
[4] Super Gabor frames on discrete periodic sets, Adv. Comput. Math. 38 (2013), no. 4, 763–799. (with Qiao-Fang Lian)
[5] Rational time-frequency super Gabor frames and their duals, J. Math. Anal. Appl. 403 (2013), no. 2, 619–632. (with Feng-Ying Zhou)
[6] Lattice tiling and density conditions for subspace Gabor frames. J. Funct. Anal. 265 (2013), no. 7, 1170–1189. (withJean-Pierre Gabardo and Deguang Han )
[7] The equivalence between seven classes of wavelet multipliers and arcwise connectivity they induce. J. Fourier Anal. Appl. 19 (2013), no. 5, 1060–1077. (with Yan-Qin Xue)
[8] Super oblique Gabor duals of super Gabor frames on discrete periodic sets, Num. Func. Anal. Optim., 34(2013), no. 3, 284–322. (with Qiao-Fang Lian)
[9] Rational time-frequency vector-valued subspace Gabor frames and Balian-Low theorem, Int. J. Wavelets Multiresolut. Inf. Process., 11(2013), no.1, 1350013, 23pp. (with Yan Zhang)
[10] Generalized multiresolution structures in reducing subspaces of $L^2(Bbb R^d)$, Sci. China Math., 56(2013), 619–638. (with Feng-Ying Zhou)
[11] Discrete subspace multiwindow Gabor frames and their duals. Abstr. Appl. Anal. 2013, Art. ID 357242, 17 pp. (withYan Zhang)
[12] An embedding theorem on reducing subspace frame multiresolution analysis. Kodai Math. J. 35 (2012), no. 1, 157–172. (with Lin Zhang)
[13] Gabor families in $l^2(Bbb Z^d)$, Kyoto J. Math. 52 (2012), no. 1, 179–204. (with Qiao-Fang Lian)
[14] Supports of Fourier transforms of refinable frame functions and their applications to FMRA. Acta Math. Appl. Sin. Engl. Ser. 28 (2012), no. 4, 757–768. (with Chun-Hua Han)
[15] Construction of a class of multivariate compactly supported wavelet bases for . Front. Math. China 7 (2012), no. 1,177–195. (with Feng-Ying Zhou)
[16] The characterization of a class of multivariate MRA and semi-orthogonal Parseval frame wavelets, Appl. Math. Comput., 217(2011), no. 22, 9151–9164 . (with Feng-Ying Zhou)
[17] Gabor frame sets for subspaces, Adv. Comput. Math, 34(2011), no. 4, 391–411. (with Qiao-Fang Lian)
[18] GMRA-based construction of framelets in reducing subspaces of $L^2(Bbb R^d)$, Int. J. Wavelets Multiresolut. Inf. Process., 9 (2011), no. 2, 237–268. (with Feng-Ying Zhou)
[19] Multi-window Gabor frames and oblique Gabor duals on discrete periodic sets,Sci. China Math., 54(2011), no. 5, 987–1010. (with Qiao-Fang Lian)
[20] On the aliasing error in a class of bidimensional wavelet subspaces. Appl. Math. J. Chinese Univ. Ser. B 26 (2011),no. 1, 77–85. (with Hui-Min Liu)
[21] Multivariate FMRAs and FMRA frame wavelets for reducing subspaces of $L^2(Bbb R^d)$, Kyoto J. Math., 50 (2010), no. 1, 83–99 . (with Feng-Ying Zhou)
[22] Gabor systems on discrete periodic sets. Sci. China Ser. A 52 (2009), no. 8, 1639-1660. (with Qiao-Fang Lian)
[23] Density results for Gabor systems associated with periodic subsets of the real line. J. Approx. Theory 157 (2009),no. 2, 172--192. (with Jean-Pierre Gabardo)
[24] The duals of Gabor frames on discrete periodic sets. J. Math. Phys. 50 (2009), no. 1, 013534, 22 pp.(with Qiao-Fang Lian)
[25] Tight Gabor sets on discrete periodic sets. Acta Appl. Math. 107 (2009), no. 1-3, 105--119. (with Qiao-Fang Lian)
[26] The spectrum sequences of periodic frame multiresolution analysis. Acta Math. Sin. (Engl. Ser.) 25 (2009), no. 3,403--418. (with Qiao-Fang Lian)
[27] Holes in the spectrum of functions generating affine systems. Proc. Amer. Math. Soc., 135(2007), no. 6, 1775--1784 (with Jean-Pierre Gabardo)
[28] Reducing subspace frame multiresolution analysis and frame wavelets. Commun. Pure Appl. Anal. 6 (2007), no. 3, 741--756. (with Qiao-Fang Lian)
[29] A class of bidimensional FMRA wavelet frames. Acta Math. Sin. (Engl. Ser.), 22 (2006), no.4, 1051-1062
[30] On the construction of a class of bidimensional nonseparable compactly supported wavelets. Proc. Amer. Math. Soc.133 (2005), no. 12, 3505—3513
[31] A note on Gabor orthonormal bases. Proc. Amer. Math. Soc. 133 (2005), no. 8, 2419-2428
[32] A remark on the orthogonality of a class bidimensional nonseparable wavelets. Acta Math. Sci. Ser. B Engl. Ed. 24(2004), no. 4, 569–576.
[33] On the holes of a class of bidimensional nonseparable wavelets. J. Approx. Theory, 125 (2003), no. 2, 151--168.
[34] On a class of bidimensional nonseparable wavelet multipliers. J. Math. Anal. Appl., 270 (2002), no. 2, 543--560.
[35] A class of bidimensional nonseparable wavelet packets. Acta Math. Sci. Ser. B Engl. Ed. 22 (2002), no. 1, 131–137 (with Xiongfei Tian) [2] 
參考資料