- 中文名
- 收敛
- 外文名
- convergence
- 基本问题
- 级数的收敛发散问题
- 作 用
- 研究函数的一个重要工具
- 应 用
- 进行近似计算
数学名词
播报编辑
收敛数列
函数收敛
如果给定一个定义在区间i上的函数列,u1(x), u2(x) ,u3(x)......至un(x)....... 则由这函数列构成的表达式u1(x)+u2(x)+u3(x)+......+un(x)+......⑴称为定义在区间i上的(函数项)无穷级数,简称(函数项)级数
对于每一个确定的值X0∈I,函数项级数 ⑴ 成为常数项级数u1(x0)+u2(x0)+u3(x0)+......+un(x0)+.... (2) 这个级数可能收敛也可能发散。如果级数(2)发散,就称点x0是函数项级数(1)的发散点。函数项级数(1)的收敛点的全体称为他的收敛域 ,发散点的全体称为他的发散域 对应于收敛域内任意一个数x,函数项级数称为一收敛的常数项 级数 ,因而有一确定的和s。这样,在收敛域上 ,函数项级数的和是x的函数S(x),通常称s(x)为函数项级数的和函数,这函数的定义域就是级数的收敛域,并写成S(x)=u1(x)+u2(x)+u3(x)+......+un(x)+......把函数项级数 ⑴ 的前n项部分和 记作Sn(x),则在收敛域上有lim n→∞Sn(x)=S(x)
记rn(x)=S(x)-Sn(x),rn(x)叫作函数级数项的余项 (当然,只有x在收敛域上rn(x)才有意义,并有lim n→∞rn(x)=0)
迭代算法的敛散性
1.全局收敛
2.局部收敛
相关术语
播报编辑
收敛的基本解释:收起 。
一般的级数u1+u2+...+un+...
它的各项为任意级数。
则称级数Σun绝对收敛
经济学中的收敛,分为绝对收敛和条件收敛
绝对收敛,指的是不论条件如何,穷国比富国收敛更快。
条件收敛
一般的级数u1+u2+...+un+...
它的各项为任意级数。
如果级数Σu各项的绝对值所构成的正项级数Σ∣un∣收敛,
则称级数Σun绝对收敛。
如果级数Σun收敛,
而Σ∣un∣发散,
则称级数Σun条件收敛。