複製鏈接
請複製以下鏈接發送給好友

張傳林

(上海電力大學計算機科學與技術學院常務副院長)

鎖定
張傳林,博士,教授,上海電力大學計算機科學與技術學院常務副院長 [6]  。主要研究方向為非線性控制理論及其在分佈式發電系統、智能自主系統等領域的應用。主持國家自然科學基金、上海市青年科技啓明星等多項科研項目。現任國家級一流本科課程《自動控制原理》負責人,IEEE PES 智能電網與新技術(中國)智慧物聯與控制技術分委會常務理事,上海市自動化學會理事,上海市電子電器協會理事暨學術委員會副主任,IEEE高級會員,中國自動化學會青年工作委員會委員等。 [7] 
中文名
張傳林
國    籍
中國
民    族
漢族
畢業院校
東南大學
學位/學歷
工學博士/博士研究生
職    業
教師
職    務
常務副院長 [6] 
教學職稱
教授
工作單位
上海電力大學

張傳林人物經歷

2019/02-2022/03 上海電力大學 自動化工程學院 教授 [1] 
2017/08-2019/01 上海電力大學 自動化工程學院 副教授
2017/02-2018/02 新加坡國立大學生物工程系先進機器人中心 訪問學者
2016/02-2017/02 新加坡南洋理工大學能源研究所 訪問學者
2014/08-2017/08 上海電力大學 自動化工程學院 講師
2011/09-2012/09 美國德克薩斯大學聖安東尼奧分校 電氣與計算機工程系,聯合培養博士生 [1] 
2008/09-2014/06 東南大學自動化學院 控制理論與控制工程 研究生
2004/09-2008/06 東南大學數學學院 信息與計算科學 本科

張傳林研究方向

  1. 非線性控制理論 [1]  :非線性系統的非遞歸控制理論,齊次系統理論,智能控制理論,先進抗干擾控制理論
  2. 微電網控制應用:直流微電網的大信號穩定性控制,電力電子變流器的智能控制技術
  3. 智能電力機器人:變電站遙操作智能運維機器人,新能源電站巡檢機器人,機器人先進伺服控制技術

張傳林主要成就

入選上海市高校特聘教授(東方學者),上海市青年科技啓明星,上海市揚帆計劃,晨光計劃,上海電力大學“電院之星”計劃 [3] 
國家級一流本科課程建設點《自動控制原理》課程負責人 [4] 
主持國家自然科學基金面上項目與青年基金、上海市自然科學基金等多項科研項目。 [1] 
發表學術論文100餘篇 [2]  ,SCI檢索期刊論文60餘篇,IEEE Transactions 彙刊論文30餘篇 [5]  ,申請國家專利10餘項。

張傳林社會任職

IEEE PES 智能電網與新技術(中國)智慧物聯與控制技術分委會常務理事 [7] 
上海市電子電器協會理事暨學術委員會副主任
中國自動化學會青年工作委員會委員
上海自動化學會理事
IEEE高級會員

張傳林代表論著

非線性控制理論方向: [2]  [7] 
[1] Zhang C, Yang J*. Nonsmooth adaptive control for uncertain nonlinear systems: a non-recursive design approach. IEEE Control Systems Letters, 2021, 6: 229-234.
[2] Zhang C, Yang J*, Fridman L, Yan Y, Li S. Semi-Global Finite-Time Trajectory Tracking Realization for Disturbed Nonlinear Systems via Higher-Order Sliding Modes. IEEE Transactions on Automatic Control, 2020,60(5): 2185-2191.
[3] Zhang C, Yan Y, Yu H*. Global dynamic non-recursive realization of decentralized nonsmooth exact tracking for large-scale interconnected nonlinear systems. IEEE Transactions on Cybernetics, 2019, 49(9): 3521-3531.
[4] Zhang C, Wen C, Wang L*. Nonsmooth decentralized stabilization for interconnected systems subject to strongly coupled uncertain interactions. IEEE Transactions on Systems, Man and Cybernetics: Systems. 2020, 50(7): 2685-2692.
[5] Zhang C, Yang J*, Wen C, Wang L, Li, S. Realization of exact tracking control for nonlinear systems via a non-recursive dynamic design. IEEE Transactions on Systems, Man and Cybernetics: Systems. 2020, 50(2):577-589.
[6] Li T, Yang J*, Li S, Wen C, Zhang C. Global adaptive finite-time stabilization of uncertain time-varying p-normal nonlinear systems without homogeneous growth nonlinearity restriction. IEEE Transactions on Automatic Control, 2019, 64(11):4637-4644.
[7] Yang J, Ding Z*, Li S, Zhang C. Continuous Finite-Time Output Regulation of Nonlinear Systems with Unmatched Time-Varying Disturbances. IEEE Control Systems Letters, 2018, 2(1): 97-102.
微電網先進控制應用研究方向: [2] 
[8] Wang X, Dong X, Niu X, Zhang C*, Cui C, Huang J, Lin P.Towards balancing dynamic performance and system stability for DC microgrids: A new decentralized adaptive control strategy, IEEE Transactions on Smart Grid, DOI:10.1109/TSG.2022.3167425. (IF=10.486)
[9] Cui C, Yan N, Huangfu B, Yang T, Zhang C*. Voltage regulation of DC-DC buck converters feeding CPLs via deep reinforcement learning, IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69(3):1777-1781.
[10] Zhang M, Xu Q, Zhang C*, Nordstrom L, Blaabjerg F. Decentralized coordination and stabilization of hybrid energy storage systems in DC microgrids, IEEE Transactions on Smart Grid, doi: 10.1109/TSG.2022.3143111.
[11] Zhang C, Wang J, Li S*, Wu B, Qian C. Robust control for PWM-based DC–DC buck power converters with uncertainty via sampled-data output feedback. IEEE Transactions on Power Electronics, 2015, 30(1): 504-515.
[12] Zhang C, Wang X, Lin P, Peter X Liu*, Yan Y, Yang J. Finite-Time Feedforward Decoupling and Precise Decentralized Control for DC Microgrids Towards Large Signal Stability. IEEE Transactions on Smart Grid, 2020, 11(1): 391-402.
[13] Lin P, Zhang C, Zhang X, Herbert Ho, Yang Y, Blaabjerg F. Finite-Time Large Signal Stabilization for High Power DC Microgrids with Exact Offsetting of Destabilizing Effects. IEEE Transactions on Industrial Electronics, 2021, 68(5):4014-4026.
[14] Xu Q, Yan Y, Zhang C*, Dragicevic T, Blaabjerg F. An offset-free composite model predictive control strategy for DC/DC buck converter feeding constant power loads. IEEE Transactions on Power Electronics, 2020, 35(5): 5331-5342.
[15] Xu Q, Zhang C*, Wen C, Wang P. A Novel Composite Nonlinear Controller for Stabilization of Constant Power Load in DC Microgrid. IEEE Transactions on Smart Grid, 2019, 10(1):752-761.
[16] Lin P, Zhang C*, Wang P. Xiao J. A decentralized composite controller for unified voltage control with global system large-signal stability in DC microgrids. IEEE Transactions on Smart Grid. 2019, 10(5): 5075-5091.
[17] Lin P, Zhang C*, Wang P. On Autonomous Large Signal Stabilization for Islanded Multi-bus DC Microgrids: A Uniform Nonsmooth Control Scheme, IEEE Transactions on Industrial Electronics, 2020, 67(6): 4600-4612.
[18] Xu Q, Xu Y, Zhang C*, Wang P. A Droop-based Autonomous Controller for Decentralized Power Sharing in DC Microgrid Considering Large Signal Stability. IEEE Transactions on Industrial Informatics, 2020, 16(3): 1483-1494.
[19] Lin P, Jiang W, Tu P, Jin C, Zhang C*, Wang P. Dynamic Power Allocation for Hybrid Energy Storage System with Self-Disciplined Large Signal Stability in Renewable DC Power Systems. IEEE Transactions on Sustainable Energy, 2020, 11(4):2345-2355.
[20] Lin P, Jiang W, Wang J, Zhang C*, Wang P. Toward Large signal stabilization of floating dual boost converter powered DC microgrids feeding constant power loads, IEEE Journal of Selecting and Emerging Topics in Power Electronics, 2021, 9(1): 2168-6777.
[21] Xu Q, Jiang W, Blaabjerg F, Zhang C, Zhang X*, Fernando T. Backstepping Control for Large Signal Stability of High Boost Ratio Interleaved Interfaced DC Microgrids with Constant Power Loads. IEEE Transactions on Power Electronics, 2020, 35(5): 5397-5407.
[22] Lin P, Wang P*, Jin C, Xiao J, Li X, Guo F, Zhang C. A distributed power management strategy for multi-paralleled bidirectional interlinking converters in hybrid AC/DC microgrids. IEEE Transactions on Smart Grid. 2019, 10(5): 5696-5711.
[23] Xu Q, Zhang C, Xu Z*, Wang P. A Composite Finite-Time Controller for Decentralized Power Sharing and Stabilization of Hybrid Fuel Cell/Supercapacitor System with Constant Power Load, IEEE Transactions on Industrial Electronics, 2020, 68(2): 1388-1400.
[24] Wang J, Zhang C, Li S*, Li Q, Yang J. Finite-time output feedback control for PWM-based DC-DC buck power converters of current sensor-less mode. IEEE Transactions on Control Systems Technology, 2017, 25(4): 1359-1371.
[25] Xu X, Liu Q, Zhang C, Zeng Z*. Prescribed performance controller design for DC converter system with constant power loads in DC microgrid, IEEE Transactions on Systems, Man and Cybernetics: Systems. 2020, 50(11):4339-4348.
機器人系統先進控制應用方向: [2] 
[26] Zhang C, Yan Y, Wen C, Yang J, Yu H*. A Nonsmooth Composite Control Design Framework for Nonlinear Systems with Mismatched Disturbances: Algorithms and Experimental Tests. IEEE Transactions on Industrial Electronics, 2018, 65(11): 8828-8839.
[27] Zhang C, Yan Y, Ashwin Narayan, Yu H*. Practically Oriented Finite-Time Control Design and Implementation: Application to Series Elastic Actuator. IEEE Transactions on Industrial Electronics, 2018, 65(5):4166-4176.
[28] Yan Y, Zhang C, Yang J, Liu C, Li S*. Disturbance Rejection for Nonlinear Uncertain Systems with Output Measurement Errors: Application to a Helicopter Model. IEEE Transactions on Industrial Informatics, 2020, 16(5): 3133-3144.
[29] Yan Y, Zhang C, Ashwin Narayan, Yang J, Li S, Yu H*. Generalized Dynamic Predictive Control for Non-Parametric Uncertain Systems with Application to Series Elastic Actuators. IEEE Transactions on Industrial Informatics, 2018,14(11): 4829-4840.
[30] Yan Y, Yang J, Sun Z, Zhang C, Li S*, Yu H. Robust Speed Regulation for PMSM Servo System with Multiple Sources of Disturbances via An Augmented Disturbance Observer. IEEE/ASME Transactions on Mechatronics, 2018, 23(2):769-780.
參考資料