複製鏈接
請複製以下鏈接發送給好友

孫宏濱

(東北大學理學院化學系教授)

鎖定
孫宏濱,東北大學理學院化學系教授、博士生導師,1977年生,2006年畢業於清華大學並獲得博士學位。研究領域涉獵廣泛,包括催化氫轉移,有機碳基電池,電催化及儲能,特種碳材料,複合納米材料、重金屬吸附、流動化學、催化雜環合成,綠色化學、精細化學品合成工藝等研究。在Nature Communications, Adv. Funct. Mater., Adv. Sci., Chem. Eng. J., J. Mater. Chem. A., J. Catal., Green Chem., Nano Res.等國內外知名期刊發表SCI論文100餘篇,授權發明專利6項。 [11] 
中文名
孫宏濱
外文名
Hong-bin Sun
國    籍
中國
民    族
漢族
出生地
河北唐山
出生日期
1977年7月
畢業院校
清華大學
職    稱
教授

孫宏濱人物生平

1996~2000,清華大學化學系化學專業獲理學學士學位
2000~2006,清華大學化學系,獲理學博士學位;
2006~2007在保諾(北京)科技公司任職“高級有機合成研究員”,從事新藥研發工作;
2007年受聘為東北大學化學系副教授。
2018-2019,美國中佛羅里達大學納米中心,訪問學者
2021,東北大學理學院化學系,教授、博士生導師

孫宏濱主要成就

主講本科生課程:物理化學,工業催化
主講研究生課程:催化化學
研究領域:催化化學有機化學
主持的科研項目:
  • 國家自然科學基金項目:21003018 Bi、Fe無機鹽催化的C-N鍵生成反應在雜環合成中的應用研究
  • 中央高校基本科研業務費:N090405007無機鹽催化雜環化合物的合成反應研究
  • 中央高校基本科研業務費:N130405005 連續流微反應器在催化雜環化合物合成反應中的應用研究
  • 遼寧省工業企業科技特派員項目:苯氧乙酸系列化合物環保生產工藝的開發
發明專利:
CN201410337292.8,一種“三循環”式無廢水製備苯氧乙酸的方法
CN201310554146.6,一種高鹽度含酚廢水的處理方法
近5年發表論文:
1. Xu, W.; Feng, Y.; Sun, Z.; Guo, L.; Li, C.;Li, H.; Wang, Y.; Sun, H. b., P-induced bottom-up growth of Fe-doped Ni12P5nanorod arrays for urea oxidation reaction. J.Colloid Interface Sci. 2023, 633, 746-753.
2. Xie, L.; Zhang, Z.; Wu, Q.; Gao, Z.; Mi, G.; Wang, R.; Sun,H.-b.; Zhao, Y.; Du, Y., Intelligent wearable devices based on nanomaterialsand nanostructures for healthcare. Nanoscale2023, 15 (2), 405-433.
3. Wang, Y.; Zhang, X.; Ju, N.; Jia, H.; Sun, Z.; Liang, J.; Guo,R.; Niu, D.; Sun, H.-b., High capacity adsorption of antimony in biomass-basedcomposite and its consequential utilization as battery anode. Journal of Environmental Sciences 2023, 126, 211-221.
4. Jia, H.; Wang, Y.; Zhao, S.; Wang, H.; Ju, N.; Zhang, X.; Li,H.; Sun, Z.; Sun, H.-B., Fe, Ni-modified ZIF-8 as a tensive precursor to deriveN-doped carbon as Na and Li-ion batteries anodes. Nanotechnology 2023, 34 (8), 085401.
5. Guo, R.; Zhang, X.; Hu, Z.-N.; Niu, D.; Li, X.; Sun, H.; Liang,Q., Synergizing the Cu-only catalyst with the amino-modified mesoporousdouble-shelled nanoreactor for the selective transfer hydrogenation ofnitriles. Journal of EnvironmentalChemical Engineering 2023, 11 (1).
6. Zhao, S.; Jia, H.; Wang, Y.; Ju, N.; Zhang, X.; Guo, Y.; Wang,Y.; Wang, H.; Niu, S.; Lu, Y.; Zhu, L.; Sun, H.-b., Engineering monodispersed 2nm Sb2S3 particles embedded in a porphyrin-based MOF-derived mesoporous carbonnetwork via an adsorption method to construct a high-performance sodium-ionbattery anode. Dalton Transactions 2022, 51 (33), 12524-12531.
7. Zhang, X.; Xie, N.; Guo, Y.; Guo, R.; Jiang, T.; Wang, Y.; Wang,Y.; Niu, D.; Qi, Y.; Sun, H.-B., Biochar microtube interconnected hydrotalcitenanosheets for the adsorption of aqueous Sb(III). Nanotechnology 2022, 33 (27), 275704.
8. Zhang, W.; Wang, Y.; Ding, K.; Li, H.; Sun, Z.; Hu, Z.-N.; Sun,H.-b., A semi-encapsulated PdRh alloy heterojunction for the selectivecatalytic hydrogenation of nitrophenylacetylene to nitrostyrene. Dalton Transactions 2022, 51 (38),14639-14645.
9. Xu, W.; Zhu, L.; Sun, Z.; Xue, H.; Guo, L.; Feng, Y.; Li, C.;Li, H.; Wang, Y.; Liang, Q.; Sun, H.-b., P-Induced Permeation of Nickel intoWO3 Octahedra to Form a Synergistic Catalyst for Urea Oxidation. Chemsuschem 2022.
10. Xu, W.; Zhang, W.; Sun, Z.; Guo, L.; Xie, L.; Li, C.; Feng, Y.;Liang, Q.; Yang, Y.; Sun, H.-b., Bell-shaped RuFe/Ni5P4 for efficienturea-assisted electrolytic hydrogen production. Sustainable Energy & Fuels 2022,6 (18), 4153-4159.
11. Xie, L.; Zeng, H.; Zhu, J.; Zhang, Z.; Sun, H.-b.; Xia, W.; Du,Y., State of the art in flexible SERS sensors toward label-free and onsitedetection: from design to applications. NanoRes. 2022.
12. Wang, Y.; Zhu, X.; Zhang, X.; Zheng, J.; Li, H.; Xie, N.; Guo, Y.;Sun, H.-b.; Zhang, G., Direct sulfhydryl ligand derived UiO-66 for the removalof aqueous mercury and its subsequent application as a catalyst for transfervinylation. Dalton Transactions 2022, 51 (10), 4043-4051.
13. Wang, Y.; Tian, H.; Li, H.; Deng, X.; Zhang, Q.; Ai, Y.; Sun, Z.;Wang, Y.; Liu, L.; Hu, Z.-N.; Zhang, X.; Guo, R.; Xu, W.; Liang, Q.; Sun,H.-b., Encapsulating Electron-Rich Pd NPs with Lewis Acidic MOF: Reconcilingthe Electron-Preference Conflict of the Catalyst for Cascade Condensation viaNitro Reduction. ACS Appl Mater Interfaces2022, 14 (6), 7949-7961.
14. Wang, Y.; Li, H.; Hu, Z.-n.; Chen, X.; Sun, Z.; Ai, Y.; Xu, W.;Zhang, W.; Ding, K.; Li, C.; Jiang, T.; Zhao, S.; Wang, H.; Zhang, G.; Sun, H.b., Selective transfer hydrogenation of nitrobenzaldehydes over an extremely activesynergistic MOF@Pt@MOF catalyst. MicroporousMesoporous Mater. 2022, 346, 112322.
15. Wang, H.; Jia, H.; Wang, Y.; Ju, N.; Zhang, X.; Tian, Y.; Zhao,S.; Niu, S.; Jiang, T.; Wang, Y.; Li, H.; Sun, Z.; Zhang, G.; Sun, H.-b., (Fe,Ni)-ZIF-8 derived sp2-C-rich carbon as surface coating for enhancing commercialLiFePO4 performance. Solid State Ionics 2022, 386, 116056.
16. Sun, Z. J.; Xu, W. J.; Guo, L. T.; Han, Q.; Gao, J. Y.; Wang, J.P.; Feng, Y. R.; Li, C. R.; Liang, Q. L.; Sun, H. B.; Yang, Y., Organophosphineligand derived sandwich-structural electrocatalyst for oxygen evolutionreaction. J. Energy Chem. 2022, 70, 74-83.
17. Sun, Z.; Sun, S.; Jiang, X.; Ai, Y.; Xu, W.; Xie, L.; Sun, H.-b.;Liang, Q., Oligo-layer graphene stabilized fully exposed Fe-sites forultra-sensitivity electrochemical detection of dopamine. Biosensors & Bioelectronics 2022, 211, 114367.
18. Liang, J.; Hu, Z.-N.; Zhang, X.; Ai, Y.; Wang, Y.; Ding, K.; Gao,J.; Wang, J.; Niu, D.; Sun, H.-b., Recovery of antimony using biological wasteand stepwise resourcization as catalysts for both polyesterification andtransfer hydrogenation. Colloids andSurfaces a-Physicochemical and Engineering Aspects 2022, 635, 128119.
19. Li, H.; Wang, Y.; Guo, R.; Zheng, J.; Sun, Z.; Zhang, X.; Guo, Y.;Jia, H.; Liang, Q.; Sun, H.-b., Encapsulating UiO-66-NH2@Pt with defectivePCN-222 as an active armor to fabricate a sandwich-type nanocatalyst for thetandem synthesis via hydrogenation of nitroarenes. J. Catal. 2022, 407, 253-264.
20. Li, C.; Xu, W.; Sun, Z.; Feng, Y.; Guo, L.; Wang, Y.-M.; Li, H.;Sun, H.-B., Sequentially Pitting-Grown Engineering on Ni Foam to FabricateVertical MnFeNi Hydroxide Arrays as a Facile-to-Prepare Catalyst with UltralongLifetime for Oxygen Evolution Reaction. Energy& Fuels 2022, 36 (16), 9213-9220.
21. Jiang, T.; Xie, N.; Guo, Y.; Wang, Y.; Guo, R.; Wang, Y.; Niu, D.;Zhang, G.; Zhang, X.; Sun, H., Hollow rod assembly of Fe-MnO2 nanosheetsprepared by in situ redox etching for the ultra-fast removal of antimony. Journal of Water Process Engineering 2022, 49, 103120.
22. Hu, Z.-N.; Ai, Y.; Zhao, Y.; Wang, Y.; Ding, K.; Zhang, W.; Guo,R.; Zhang, X.; Cai, X.; Wang, N.; Hu, J.; Liang, Q.; Liu, H.; Huang, F.; Wu,L.; Zhang, J.; Sun, H.-b., Determining the contribution of Mo single atomscomponents in MoO2 nanocatalyst in transfer hydrogenation. Nano Res. 2022, 16 (2), 2302-2310.
23. Hu, Z.-N.; Ai, Y.; Xu, W.; Zhang, X.; Sun, Z.; Guo, L.; Guo, R.;Wang, Y.; Ding, K.; Sun, H.-b.; Hu, J.; Liang, Q.; Yang, Y., Iron CatalyzedCascade Construction of Molybdenum Carbide Heterointerfaces for UnderstandingHydrogen Evolution. Small 2022, 18 (18), 2200439.
24. Guo, R.; Zhang, X.; Li, X.; Niu, D.; Sun, H.,Porphyrin-MOF-derived carbon-encapsulated copper as a selective and leachingresistant catalyst for the hydrogenation of nitriles. Journal of the Taiwan Institute of Chemical Engineers 2022, 140, 104561.
25. Guo, L.; Xu, W.; Sun, Z.; Feng, Y.; Li, C.; Li, H.; Liang, Q.; Xu,J.; Sun, H.-B., Highly dispersed Rh prepared by the in-situ etching-growthstrategy for energy-saving hydrogen evolution. Journal of the Taiwan Institute of Chemical Engineers 2022, 132, 104118.
26. Feng, Y.; Xu, W.; Sun, Z.; Li, C.; Guo, L.; Li, H.; Xu, J.; Sun,H.-b., Highly Integrated Precursor-Derived FePO4/P-Doped C 2DNanofilm-Encapsulated Ni2P@NC Matrix as an Electrocatalyst for Energy-SavingHydrogen Production. Acs Sustain. Chem.Eng. 2022, 10 (26), 8605-8614.
27. Ding, K.; Hu, Z.-N.; Zhang, W.; Liang, J.; Wang, Y.; Li, H.; Sun,Z.; Liang, Q.; Sun, H.-b., Bimetallic RhIn/ZIF-8 for the catalyicchemoselective hydrogenation of nitrostyrene: Exploration of naturalselectivity of hydrogen sources and enhancing intrinsic selectivity. Microporous Mesoporous Mater. 2022, 332, 111693.
28. Zheng, X.; Zhang, X. Y.; Hu, Q. L.; Sun, H. B.; Wang, L. S.; Li,X. W., Adsorption and Photocatalytic Activity of Nano-magnetic MaterialsFe3O4@C@TiO2-AgBr-Ag for Rhodamine B. CurrentNanoscience 2021, 17 (3), 484-493.
29. Zheng, J.; Zhang, L.; Li, Y.; Sun, H.; Zhang, G.; Sun, Q., Novelcore-shell nanocomposite as an effective heterogeneous catalyst for thesynthesis of benzimidazoles. Nanotechnology2021, 32 (26), 265603.
30. Zhang, X.; Xie, N.; Guo, Y.; Niu, D.; Sun, H.-b.; Yang, Y.,Insights into adsorptive removal of antimony contaminants: Functionalmaterials, evaluation and prospective. J.Hazard. Mater. 2021, 418, 126345.
31. Zhang, X.; Wang, Y.; Ju, N.; Ai, Y.; Liu, Y.; Liang, J.; Hu,Z.-N.; Guo, R.; Xu, W.; Zhang, W.; Qi, Y.; Niu, D.; Liang, Q.; Sun, H.-b.;Yang, Y., Ultimate Resourcization of Waste: Crab Shell-Derived Biochar forAntimony Removal and Sequential Utilization as an Anode for a Li-Ion Battery. Acs Sustain. Chem. Eng. 2021, 9 (26), 8813-8823.
32. Zhang, X.; Guo, Y.; Xie, N.; Guo, R.; Wang, Y.; Hu, Z.-N.; Xu, W.;Ai, Y.; Gao, J.; Wang, J.; Liang, Q.; Niu, D.; Sun, H.-b.; Qi, Y., TernaryNiFeMnOx compounds for adsorption of antimony and subsequent application inenergy storage to avoid secondary pollution. Sep. Purif. Technol. 2021,276, 119237.
33. Xu, W.; Chang, J.; Cheng, Y.; Liu, H.; Li, J.; Ai, Y.; Hu, Z.;Zhang, X.; Wang, Y.; Liang, Q.; Yang, Y.; Sun, H., A multi-step inducedstrategy to fabricate core-shell Pt-Ni alloy as symmetric electrocatalysts foroverall water splitting. Nano Res. 2021, 15 (2), 965-971.
34. Xiong, W.-L.; Peng, X.-C.; Zhong, R.-Y.; Zheng, J.; Duo, S.; Gong,S.-S.; Sun, H.-b.; Sun, Q., Construction of a Clock Catalytic System: HighlyEfficient and Self-Indicating Synthesis of Benzoheterocycles at AmbientTemperature. Asian Journal of OrganicChemistry 2021.
35. Xie, N.; Zhang, X.; Guo, Y.; Guo, R.; Wang, Y.; Sun, Z.; Li, H.;Jia, H.; Jiang, T.; Gao, J.; Wang, J.; Niu, D.; Sun, H.-b., Hollow Mn/Co-LDHproduced by in-situ etching-growth of MOF Nanoreactant for steady chemicalimmobilization of antimony. Journal ofthe Taiwan Institute of Chemical Engineers 2021, 127, 197-207.
36. Liu, Z.; Huang, F.; Peng, M.; Chen, Y.; Cai, X.; Wang, L.; Hu, Z.;Wen, X.; Wang, N.; Xiao, D.; Jiang, H.; Sun, H.; Liu, H.; Ma, D., Tuning theselectivity of catalytic nitriles hydrogenation by structure regulation inatomically dispersed Pd catalysts. NatureCommun. 2021, 12 (1), 6194.
37. Li, Y.; Li, Y.-N.; Zheng, J.-W.; Dong, X.-Y.; Guo, R.-X.; Wang,Y.-M.; Hu, Z.-N.; Ai, Y.; Liang, Q.; Sun, H.-B., Metal-OrganicFramework-Encapsulated CoCu Nanoparticles for the Selective TransferHydrogenation of Nitrobenzaldehydes: Engineering Active Armor by the Half-WayInjection Method. Chemistry-a EuropeanJournal 2021, 27 (3), 1080-1087.
38. Li, X.; Sun, H.-b.; Sun, X., Polysulfone grafted withanthraquinone-hydroanthraquinone redox as a flexible membrane electrode foraqueous batteries. Polymer 2021, 234, 124245.
39. Hu, Z.-N.; Liang, J.; Ding, K.; Ai, Y.; Liang, Q.; Sun, H.-b.,Insight into the selectivity of nano-catalytic nitroarenes reduction over otheractive groups by exploring hydrogen sources and metal components. Appl. Catal., A 2021, 626, 118339.
40. Guo, Y.; Zhang, X.; Xie, N.; Guo, R.; Wang, Y.; Sun, Z.; Li, H.;Jia, H.; Niu, D.; Sun, H.-b., Investigation of antimony adsorption on azirconium-porphyrin-based metal-organic framework. Dalton Transactions 2021,13932.
41. Guo, R.; Zhang, X.; Hu, Z.-N.; Li, H.; Gao, J.; Wang, J.; Liang,Q.; Li, X.; Niu, D.; Sun, H.-b., A hollow in hollow nanoreactor of H-PtCu@SiO2for the selective transfer hydrogenation. Chem.Eng. J. 2021, 425, 131417.
42. Guo, R.; He, G.; Chen, X.; Zhang, X.; Hu, Z.-n.; Li, X.; Niu, D.;Sun, H.-b., Ultrathin Modified Silica "Skin" for the TransferHydrogenation Catalyst: Improving Selectivity by Adjusting Surface Wettability.Advanced Materials Interfaces 2021, 8 (11), 2100013.
43. Guo, L.; Xu, W.; Sun, Z.; Feng, Y.; Li, C.; Li, H.; Liang, Q.; Xu,J.; Sun, H.-b., Highly dispersed Rh prepared by the in-situ etching-growthstrategy for energy-saving hydrogen evolution. Journal of the Taiwan Institute of Chemical Engineers 2021.
44. Ai, Y.; You, J.; Gao, J.; Wang, J.; Sun, H.-b.; Ding, M.; Liang,Q., Multi-shell nanocomposites based multienzyme mimetics for efficientintracellular antioxidation. Nano Res. 2021, 14 (8), 2644-2653.
45. Ai, Y.; Hu, Z.-N.; Liang, X.; Sun, H.-b.; Xin, H.; Liang, Q.,Recent Advances in Nanozymes: From Matters to Bioapplications. Adv. Funct. Mater. 2021, 2110432.
46. Zhang, X. Y.; Dai, B. S.; Ren, S. C.; Hu, Z. N.; Zheng, X.; Wang,Y.; Sun, H. B.; Niu, D.; Wang, L. S., Iron diffusion-doped magnesium-aluminumlayered double oxides as a multifunctional adsorbent for removal of F-, Sb(III)and methyl orange contaminants from water. KoreanJ. Chem. Eng. 2020, 37 (5), 792-803.
47. Zhang, J.; Ai, Y.; Wu, J.; Zhang, D.; Wang, Y.; Feng, Z.; Sun,H.-b.; Liang, Q.; Sun, T.; Yang, Y., Nickel-Catalyzed Synthesis of 3DEdge-Curled Graphene for High-Performance Lithium-Ion Batteries. Adv. Funct. Mater. 2020, 30 (9), 1904645.
48. Wu, J.; Zhang, J.; Ai, Y.; Li, J.; Zhang, X.; Hu, Z.-N.; Wang, H.;Liang, Q.; Sun, H.-b., Cobalt-promoted fabrication of 3D carbon with ananotube-sheet mutual support structure: scalable preparation of a high-performanceanode material for Li-ion batteries. Nanotechnology2020, 31 (8), 085402.
49. Ren, S.; Ai, Y.; Zhang, X.; Ruan, M.; Hu, Z.-n.; Liu, L.; Li, J.;Wang, Y.; Liang, J.; Jia, H.; Liu, Y.; Niu, D.; Sun, H.-b.; Liang, Q.,Recycling Antimony(III) by Magnetic Carbon Nanospheres: Turning Waste toRecoverable Catalytic for Synthesis of Esters and Triazoles. Acs Sustain. Chem. Eng. 2020, 8 (1), 469-477.
50. Li, J.; Liu, L.; Ai, Y.; Liu, Y.; Sun, H.; Liang, Q.,Self-Polymerized Dopamine-Decorated Au NPs and Coordinated with Fe-MOF as aDual Binding Sites and Dual Signal-Amplifying Electrochemical Aptasensor forthe Detection of CEA. ACS Appl MaterInterfaces 2020, 12 (5), 5500-5510.
51. Guo, R. X.; He, G. Q.; Liu, L.; Ai, Y. J.; Hu, Z. N.; Zhang, X.Y.; Tian, H. M.; Sun, H. B.; Niu, D.; Liang, Q. L., Selective Synthesis ofSymmetrical Secondary Amines from Nitriles with a Pt-CuFe/Fe(3)O(4)Catalyst andAmmonia Borane as Hydrogen Donor. ChemPlusChem2020, 85 (8), 1783-1788.
52. Ai, Y.; Liu, L.; Hu, Z.-N.; Li, J.; Ren, S.; Wu, J.; Long, Y.;Sun, H.-b.; Liang, Q., In-situ Construction of Graphite-Supported MagneticCarbocatalysts from a Metallo-Supramolecular Polymer: High Performance forCatalytic Transfer Hydrogenation. Chemnanomat2020, 6 (4), 629-638.
53. Xie, L.; Chen, P.; Chen, S.; Yu, K.; Sun, H., Low-Cost and HighlySensitive Wearable Sensor Based on Napkin for Health Monitoring. Sensors 2019, 19 (15).
54. Tian, H.; Zhou, J.; Li, Y.; Wang, Y.; Liu, L.; Ai, Y.; Hu, Z.-N.;Li, J.; Guo, R.; Liu, Z.; Sun, H.-b.; Liang, Q., Rh Catalyzed SelectiveHydrogenation of Nitroarenes under Mild Conditions: Understanding theFunctional Groups Attached to the Nanoparticles. Chemcatchem 2019, 11 (22), 5543-5552.
55. Liu, L.; Li, J.; Ai, Y.; Liu, Y.; Xiong, J.; Wang, H.; Qiao, Y.;Liu, W.; Tan, S.; Feng, S.; Wang, K.; Sun, H.; Liang, Q., A ppm level Rh-basedcomposite as an ecofriendly catalyst for transfer hydrogenation of nitriles:triple guarantee of selectivity for primary amines. Green Chem. 2019, 21 (6), 1390-1395.
56. Li, J. F.; Liu, L.; Ai, Y. J.; Hu, Z. N.; Xie, L. P.; Bao, H. J.;Wu, J. J.; Tian, H. M.; Guo, R. X.; Ren, S. C.; Xu, W. J.; Sun, H. B.; Zhang,G.; Liang, Q. L., Facile and Large-Scale Fabrication of Sub-3 nm PtNiNanoparticles Supported on Porous Carbon Sheet: A Bifunctional Material for theHydrogen Evolution Reaction and Hydrogenation. Chem. Eur. J. 2019, 25 (29), 7191-7200.
57. Li, J.; Liu, L.; Ai, Y.; Hu, Z.; Xie, L.; Bao, H.; Wu, J.; Tian,H.; Guo, R.; Ren, S.; Xu, W.; Sun, H.; Zhang, G.; Liang, Q., Facile andLarge-Scale Fabrication of Sub-3 nm PtNiNanoparticles Supported on Porous Carbon Sheet: A Bifunctional Material for theHydrogen Evolution Reaction and Hydrogenation. Chem. Eur. J. 2019.
58. Li, J.; Liu, L.; Ai, Y.; Hu, Z.; Liu, Z.; Guo, R.; Zhang, C.;Tian, H.; Wu, J.; Ruan, M.; Sun, H., Moderate Activity from Trace PalladiumAlloyed with Copper for the Chemoselective Hydrogenation of -CN and -NO2 withHCOOH. Chemistryselect 2019, 4 (24), 7346-7350.
59. Hu, Z.-N.; Ai, Y.; Liu, L.; Chen, Y.; Song, X.; Li, J.; Yu, J.;Tian, H.; Guo, R.; Sun, H.-b.; Hu, J.; Liang, Q., A Predictable Catalyst Modelfor Highly Active and Selective Catalysis of Hydrogenation of Nitroarenes:Comprehension of Various Precious Metal Nanoparticles. Chemistryselect 2019, 4 (31), 8960-8967.
60. Hu, Z.; Ai, Y.; Liu, L.; Zhou, J.; Zhang, G.; Liu, H.; Liu, X.;Liu, Z.; Hu, J.; Sun, H.-b.; Liang, Q., Hydroxyl Assisted Rhodium CatalystSupported on Goethite Nanoflower for Chemoselective Catalytic TransferHydrogenation of Fully Converted Nitrostyrenes. Adv. Synth. Catal. 2019,361 (13), 3146-3154.
61. Ai, Y.; Hu, Z.; Liu, L.; Zhou, J.; Long, Y.; Li, J.; Ding, M.;Sun, H.-B.; Liang, Q., Magnetically Hollow Pt Nanocages with Ultrathin Walls asa Highly Integrated Nanoreactor for Catalytic Transfer Hydrogenation Reaction. Adv. Sci. 2019, 6 (7), 1802132.
62. Wang, J.; Chen, Y.; Zhang, Z.; Ai, Y.; Liu, L.; Qi, L.; Zhou, J.;Hu, Z.; Jiang, R.; Bao, H.; Ren, S.; Liang, J.; Sun, H.; Niu, D.; Liang, Q.,Microwell Confined Iron Oxide Nanoparticles in Honeycomblike Carbon Spheres forthe Adsorption of Sb(III) and Sequential Utilization as a Catalyst. Acs Sustain. Chem. Eng. 2018, 6 (10), 12925-12934.
63. Liu, L.; Liu, Y.; Ai, Y.; Li, J.; Zhou, J.; Fan, Z.; Bao, H.;Jiang, R.; Hu, Z.; Wang, J.; Jing, K.; Wang, Y.; Liang, Q.; Sun, H., Pd-CuFeCatalyst for Transfer Hydrogenation of Nitriles: Controllable Selectivity toPrimary Amines and Secondary Amines. iScience2018, 8, 61-73.
64. Li, S.; Xiang, H.; Jiang, R.; Ju, J.; Jiao, P.; Yuan, H.; Sun, H.;Cai, H., Stereoselective Vinylation under Mild Metal-Free Conditions toSynthesize N-Vinylazoles. Chin. J. Org.Chem. 2018, 38 (6), 1493.
65. Jiang, R. H.; Sun, H. B.; Li, S.; Zhan, K.; Zhou, J. J.; Liu, L.;Zhang, K.; Liang, Q. L.; Chen, Z. P., Synthesis of tetrazoles, triazoles, andimidazolines catalyzed by magnetic silica spheres grafted acid. Synth. Commun. 2018, 48 (20), 2652-2662.
66. Jiang, R.; Chen, Z.; Zhan, K.; Liu, L.; Zhou, J.; Ai, Y.; Li, S.;Bao, H.; Hu, Z. n.; Qi, L.; Wang, J.; Sun, H.-b., Reusable rhodium catalyst forthe selective transvinylation of sp 2 -C linked carboxylic acid. Tetrahedron Lett. 2018, 59 (34), 3279-3282.
67. Hu, Z.; Zhou, J.; Ai, Y.; Liu, L.; Qi, L.; Jiang, R.; Bao, H.;Wang, J.; Hu, J.; Sun, H.-b.; Liang, Q., Two dimensional Rh/Fe3O4/g-C3N4-Nenabled hydrazine mediated catalytic transfer hydrogenation of nitroaromatics:A predictable catalyst model with adjoining Rh. J. Catal. 2018, 368, 20-30.
68. Bao, H.; Li, Y.; Liu, L.; Ai, Y.; Zhou, J.; Qi, L.; Jiang, R.; Hu,Z.; Wang, J.; Sun, H.; Liang, Q., Ultrafine FeCu Alloy NanoparticlesMagnetically Immobilized in Amine-Rich Silica Spheres for Dehalogenation-ProofHydrogenation of Nitroarenes. Chem. Eur.J. 2018, 24 (54), 14418-14424.
69. Ai, Y. J.; He, M. Q.; Zhang, F.; Long, Y.; Li, Y. Z.; Han, Q.;Ding, M. Y.; Sun, H. B.; Liang, Q. L., Metallo-supramolecular polymerengineered porous carbon framework encapsulated stable ultra-smallnanoparticles: a general approach to construct highly dispersed catalysts. J. Mater. Chem. A 2018, 6 (34),16680-16689.
70. Ai, Y.; Liu, L.; Zhang, C.; Qi, L.; He, M.; Liang, Z.; Sun, H. B.;Luo, G.; Liang, Q., Amorphous Flowerlike Goethite FeOOH HierarchicalSupraparticles: Superior Capability for Catalytic Hydrogenation ofNitroaromatics in Water. ACS Appl MaterInterfaces 2018, 10 (38), 32180-32191.
71. Ai, Y.; Hu, Z.; Shao, Z.; Qi, L.; Liu, L.; Zhou, J.; Sun, H.;Liang, Q., Egg-like magnetically immobilized nanospheres: A long-lived catalystmodel for the hydrogen transfer reaction in a continuous-flow reactor. Nano Res. 2018, 11 (1), 287-299. [1] 
72. Ai, Y.; He, M.; Zhang, F.; Long, Y.; Li, Y.; Han, Q.; Ding, M.;Sun, H.-b.; Liang, Q., Metallo-supramolecular polymer engineered porous carbon frameworkencapsulated stable ultra-small nanoparticles: a general approach to constructhighly dispersed catalysts. J. Mater.Chem. A 2018, 6 (34), 16680-16689.
73. Ai, Y.; He, M.; Lv, Q.; Liu, L.; Sun, H.-b.; Ding, M.; Liang, Q.,3D Porous Carbon Framework Stabilized Ultra-Uniform Nano gamma-Fe2O3: A UsefulCatalyst System. Chem. Asian. J. 2018, 13 (1), 89-98. [5] 
74. Zhou, J.; Li, Y.; Sun, H.-b.; Tang, Z.; Qi, L.; Liu, L.; Ai, Y.;Li, S.; Shao, Z.; Liang, Q., Porous silica-encapsulated and magnetically recoverableRh NPs: a highly efficient, stable and green catalyst for catalytic transferhydrogenation with "slow-release" of stoichiometric hydrazine inwater. Green Chem. 2017, 19 (14), 3400-3407. [3] 
75. Zhou, J.; Chen, Z.; Hu, Z.; Li, K.; Ai, Y.; Li, S.; Qi, L.; Tang,Z.; Liu, L.; Sun, H.-b., Rhodium Nanoparticles Loaded on Carbon-Wrapped Fe3O4Sphere: an Efficient, Stable and Magnetically Recoverable Catalyst for theCatalytic Transfer Hydrogenation of Nitroarenes in Water. Chemistryselect 2017, 2 (23), 6762-6766. [10] 
76. Tang, Z.; Zhou, J.; Qi, L.; Liu, L.; Li, S. a.; Sun, H.; Zhang,G., Preparation of Ti/Sb-SnO2-GO/PbO2 Electrode and Its Application inElectrochemical Oxidation Treatment of Ultralow-Concentration ResidualHydrazine in Water. Int. J. Electrochem.Sci. 2017, 12 (5), 4465-4478. [9] 
77. Sun, H.-b.; Ai, Y.; Li, D.; Tang, Z.; Shao, Z.; Liang, Q., Bismuthiron oxide nanocomposite supported on graphene oxides as the high efficient,stable and reusable catalysts for the reduction of nitroarenes under continuousflow conditions. Chem. Eng. J. 2017, 314, 328-335. [2] 
78. Qi, L.; Li, Y.; Liu, L.; Zhou, J.; Ai, Y.; Tang, Z.; Wang, J.;Bao, H.; Zhang, C.; Liang, Q.; Sun, H.; Niu, D., Immobilizing MultifunctionalFe2O3-SnO2 Nanoparticles to Carbon Nanospheres: An Extremely Active andSelective Catalyst for Hydrogen Transfer Reaction. Chemistryselect 2017, 2 (27), 8288-8295. [7] 
79. Liu, L.; Ai, Y.; Li, D.; Qi, L.; Zhou, J.; Tang, Z.; Shao, Z.;Liang, Q.; Sun, H.-B., Recyclable Acid-Base Bifunctional Core-Shell-ShellNanosphere Catalyzed Synthesis of 5-Aryl-1H-1,2,3-triazoles through the"One-Pot" Cyclization of Aldehydes, Nitromethane, and Sodium Azide. Chemcatchem 2017, 9 (16), 3131-3137. [4] 
80. Li, D.; Liu, L.; Tian, Y.; Ai, Y.; Tang, Z.; Sun, H.-b.; Zhang,G., A flow strategy for the rapid, safe and scalable synthesis of N-H 1, 2,3-triazoles via acetic acid mediated cycloaddition between nitroalkene andNaN3. Tetrahedron 2017, 73 (27-28), 3959-3965. [6] 
81. Ai, Y.; Liu, L.; Jing, K.; Qi, L.; Fan, Z.; Zhou, J.; Sun, H.-b.;Shao, Z.; Liang, Q., Noncovalently functionalized carbon nanotubes immobilizedFe–Bi bimetallic oxides as a heterogeneous nanocatalyst for reduction ofnitroaromatics. Nano-Structures &Nano-Objects 2017, 10, 116-124. [8] 

孫宏濱人物評價

孫宏濱老師堅持貫徹以人為本的教學理念,始終將學生的想法貫徹到第一位,在學生中口碑甚好。課題組科研氛圍良好,每年產出SCI論文10餘篇,並充分考慮學生未來發展,以學生為第一作者。課題組注重學生的培養,每位碩士生畢業前至少能夠發表一篇SCI。2017年有兩名學生獲得國家獎學金,一名學生獲得東北大學命名獎學金一等獎,一人獲得東北大學優秀碩士畢業論文,已從課題組畢業多年的學生多為各行各業的精英人才。課題組與清華大學建立了良好的合作關係,近年已有三名畢業生考取清華大學博士生。歡迎業界人士合作交流.
參考資料
展開全部 收起