複製鏈接
請複製以下鏈接發送給好友

壓延成型

鎖定
壓延成型(Calendering)是藉助於輥筒間強大的剪切力,並配以相應的加工温度,使黏流態的物料多次受到擠壓和延展作用,最終成為具有寬度和厚度的薄片製品的一種加工方法。塑料橡膠均有壓延成型工藝,塑料中以聚氯乙烯樹脂為主要原料。 [1] 
中文名
壓延成型
外文名
壓延成型
用    於
塑料薄膜或片材的生產
類    型
平行異向旋轉輥筒間隙

壓延成型簡介

壓延成型,是指生產高分子材料薄膜和片材的主要方法,它是將接近粘流温度的物料通過一系列相向旋轉着的平行輥筒的間隙,使其受到擠壓和延展作用,成為具有一定厚度和寬度的薄片狀製品。
將熔融塑化的熱塑性塑料通過兩個以上的平行異向旋轉輥筒間隙,使熔體受到輥筒擠壓延展、拉伸而成為具有一定規格尺寸和符合質量要求的連續片狀製品,最後經自然冷卻成型的方法。 [2] 

壓延成型發展歷史

歐洲在十八世紀有用兩個輥筒的軋光機把織物軋去毛頭和上光的設備。當時這種機器很簡單,連軸承也沒有。 到了十九世紀,壓延法開始被用來加工紙張和金屬薄片。之後,隨着橡膠工業的發展,美國和德國開始使用冷硬鑄鐵的壓延輥筒加工橡膠。最初使用的是兩個輥筒的煉膠機,後來發展了三個輥筒的壓延機。到1836年,美國人E.M.查非在三輥機的基礎上設計出第一台四輥壓延機。 二十世紀三十年代,由於聚氯乙烯大量投產,美國和德國都曾試用加工橡膠的壓延機來壓延聚氯乙烯,但是鑑於這些機器受到原來設計的限制,在某些方面還不能完全符合塑料的加工要求,所以後來設計了專門壓延塑料的壓延機。 1930年,德國人開始把紙板工業上應用的彌補輥筒彎曲變形的輥筒軸交叉法應用到塑料壓延機上來。1943年,雖然壓延輥筒和軸交叉的調節還處於手工操縱,但是德國人已經開始考慮壓延機用直流電機和單獨的齒輪箱傳動了。 為了避免相鄰壓延輥筒的橫壓力對薄膜厚度引起不良影響,原來直式的壓延機逐漸改為L型和倒L型。1950年以後,美國和西德先後設計了Z型和斜Z型四輥壓延機。 近年來,隨着科學技術的發展,現在的塑料壓延機經過不斷的改進,呈現出新的特點,朝着大型化、高速化、精密化、高自動化、機構多樣化發展。 [2] 

壓延成型原理

在壓延成型過程中,藉助於輥筒間生產的剪切力,讓物料多次受到擠壓、剪切以增大可塑性,在進一步塑化的基礎上延展成為薄型製品。輥筒對塑料的擠壓和剪切作用改變了物料的宏觀結構和分子的形態,在温度配合下使塑料塑化和延展。輥軸的結果使料層變薄,而延展後使料層的寬度和長度均增加。 壓延過程中,在滾筒對物料擠壓和剪切的同時,輥筒也受到來自物料的反作用力,這種力圖使兩輥分開的力稱分離力。通常可將輥筒設計和加工成略帶腰鼓形,或調整兩輥筒的軸,使其交叉一定角度(軸交叉)或加預應力,就能在一定程度上克服或減輕分離力的有害作用,提高壓延製品厚度的均勻性。 在壓延過程中,熱塑性塑料由於受到很大的剪切應力作用,因此大分子會沿着薄膜前進方向發生定向作用,使生成的薄膜在物理機械性能上出現各向異性,這種現象稱為壓延效應。壓延效應的大小,受壓延温度、轉速、供料厚度和物理性能等的影響,升温或增加壓延時間,均可減輕壓延效應。 [2] 

壓延成型壓延成型工藝過程及條件

目前壓延成型均以PVC製品為主,主要有軟質PVC薄膜和硬質PVC片材兩種。此處以PVC薄膜生產為例來敍述一個完整的壓延成型過程。 PVC薄膜的壓延成型工藝是以PVC樹脂為主要原料,按薄膜製品的用途不同要求,把其他輔料(增塑劑穩定劑、填加料及其他輔料)按配方的不同比例,經計量混合,加入到PVC樹脂中。由高速混合機攪拌混合均勻,再經過密煉機、擠出機或開煉機混煉、預塑化,輸送到壓延機上壓延成型。然後,通過冷卻輥筒的降温定型生產過程。 [3] 

壓延成型配方原料的選擇

產品配方設計時應注意以下幾點: 配方設計前,要了解制品的應用條件,分清製品質量要求條目中的主次項目。 擬選用的原料要注意到各原料間的相互影響和工藝操作的可行性。 注意配方中用料對工藝操作條件要求是否苛刻,那些對工藝温度變化敏感、不易與其他原料混合、容易分解的原料應儘量少用或不用。 設計的配方要經過幾次反覆試驗,應用實踐考核,修改完善之後確定一個比較理想的配方。 [3] 

壓延成型混合和塑煉

混合和塑煉的主要目的是保證物料分散均勻和塑化均勻。如果分散不均勻,會使樹脂各部分增塑作用不等,使薄膜產生魚眼、冷疤、柔韌性降低等缺陷;若塑化不均,則薄膜會產生斑痕、透明度差等缺陷。 配料混合體系不僅要按配方配製成幹混料,並且應根據各原料性質按一定順序投料。初混合可選用捏合機、高速混合機等,必要時進行加熱或在夾套中通冷卻水進行冷卻。 塑煉過程中的温度不能過高也不宜太低。温度太高,時間過長,增塑劑會散失,樹脂也將被降解。若温度太低,會出現不粘輥和塑化不均勻等現象,也會降低薄膜的力學性能。一般軟質PVC薄膜塑煉適宜温度在165~170℃之間。 近年來,隨着混煉擠出機生產技術的不斷進步,連續向壓延供料的方式正在取代間歇的喂料操作。 [3] 

壓延成型壓延

塑化後的物料利用皮帶輸送,經金屬探測儀檢測後,供料給壓延機輥筒。壓延工藝條件包括輥温、輥速、速比、存料量、輥距等是影響壓延製品質量的關鍵因素,它們既互相聯繫又互相制約。 [3] 

壓延成型輥温

輥筒具有足夠的熱量是使物料熔融塑化、延展的必要條件。物料壓延過程中所需的熱量來自於內熱和外熱。內熱即在壓延過程中輥筒轉動時,由於剪切作用而產生的大量摩擦熱。外熱指通過介質或電對輥筒表面進行加熱,使輥筒具有一定的温度。物料所需要的熱量是一定的,內熱外熱要均衡,因此輥速和輥温的控制要互相關聯。 輥温控制主要根據配方中樹脂以及助劑的因素來確定,例如配方中樹脂熔融温度低、熔融粘度低、增塑劑含量高,則壓延時輥筒温度可選低些。 內熱主要受輥筒速度影響。輥速越快,剪切摩擦熱越高,內熱越大,這樣需要的外熱相對較小,因此輥温可適當降低。但是單純提高輥速,必然引起物料壓延時間縮短和輥筒分離力增加,使產品偏厚以及存料量和產品橫向厚度分佈發生變化;若降低輥速,壓延時間延長、分離力減少,產品會先變薄,熱後由於摩擦熱減少,出現表面粗糙、不透明甚至孔洞等缺陷。 壓延時,為了使物料能夠依次貼合輥筒,避免夾入空氣而使薄膜不帶孔泡,各輥筒温度一般是依次增高的,各輥筒温差在5~10℃範圍內。 另外,壓延機輥筒表面温度還應該儘量一致,這樣才能夠使製品的橫向厚度均勻。 [3] 

壓延成型輥速和速比

輥速是決定壓延生產速度的關鍵因素。輥速快,則生產效率高,同時,製品收縮率也大。輥速應視壓延物料的流動特性和製品的厚度等因素決定。壓延機相鄰兩輥筒線速度之比稱為輥筒的速比。調整壓延機輥筒的速度,使各個輥筒具有一定的速比,主要原因一是使壓延物依次貼輥,二是提高物料的塑化程度。 壓延機的輥筒速比控制應適中。速比過大會出現包輥現象,薄膜厚度會不均勻,有時還會產生過大的內應力。速比過小,薄膜會不吸輥,導致有氣泡夾入,影響製品質量。 [3] 

壓延成型輥距和輥隙間的存料

輥距是相鄰兩輥表面間的最小距離。壓延時各輥筒間距的調節既是為了適應不同厚度製品的要求,也是為了改變各道輥隙間的存料量。 輥隙間存料量對產品質量的影響也很大。輥隙間存料量過多,物料在壓延前停留時間過長,温度降低,再進入輥間壓延時就會造成薄膜表面粗糙,內部有氣泡。存料量過少,壓延物料供不應求時,會因擠壓力不足使薄膜表面出現皺皮現象。 [3] 

壓延成型壓延效應

由於在壓延機上壓延物的縱向上受有很大的剪切應力和速比造成的拉伸應力,壓延物也因此產生沿其縱向的分子取向,以致薄膜在物理學性能上出現各向異性,這種現象在壓延成型中稱為壓延效應或定向效應。壓延效應的大小受到壓延温度、輥筒轉速與速比、輥隙間存料量、製品厚度以及物料性質等因素的影響。 壓延效應使得壓延產品產生各向異性。平行於壓延方向的拉伸強度斷裂伸長率提高,而垂直於壓延方向上的拉伸強度和斷裂伸長率降低。在自由狀態加熱時,由於解取相作用,薄膜縱向出現收縮,橫向與厚度則出現膨脹。所以壓延製品越薄,其質量就越難以保證。這也是為何薄膜厚度小於0.05mm時很少採用壓延法生產,而採用擠出吹膜生產。 [3] 

壓延成型引離、冷卻、卷取

從四輥壓延機的第三和第四輥之間引離出來的壓延薄膜,經過引離輥、軋花輥、冷卻輥和卷取輥之後成為製品。 引離輥的速度通常比壓延機主輥轉速快25%~35%,另外,為了避免製品在引離時發生冷拉伸,防止增塑劑等易揮發物凝結在引離輥表面影響產品質量,需將引離輥加熱。冷卻定型裝置採用一系列的冷卻輥筒,一般為4~8只。冷卻的目的是使製品温度下降,以便後面的卷取。卷取過程要嚴格控制卷取速度,使其始終與壓延速度相適應。為了保證壓延順利進行,一般控制的輥速為:卷取速度≧冷卻速度﹥引離速度﹥第三輥筒速度。 [3] 
參考資料
  • 1.    王高潮.材料科學與工程導論:機械工業出版社,2006
  • 2.    韓喜忠, 李明, 邢雨微. 壓延成型與擠出成型橡膠防水卷材生產方法比較[J]. 中國建築防水, 2001(6):29-30.
  • 3.    葉蕊. 塑料壓延成型技術[M]. 金盾出版社, 1989.