複製鏈接
請複製以下鏈接發送給好友

嚴紅革

鎖定
嚴紅革,男,1968年10月出生,安徽定遠人,工學博士。湖南大學材料科學與工程學院教授,博士生導師。 [1] 
中文名
嚴紅革
畢業院校
湖南大學
學位/學歷
博士
職    業
教師
專業方向
材料科學與工程
任職院校
湖南大學

嚴紅革人物經歷

嚴紅革教育經歷

1987.9~1991.6 在中南大學(原中南工業大學)材料科學與工程系金屬材料及熱處理專業讀本科,獲工學學士學位。
1991.9~1994.3 在中南大學(原中南工業大學)粉末冶金專業攻讀研究生,獲工學碩士學位
1994.9~1997.9 在中南大學(原中南工業大學)金屬材料及熱處理專業讀研究生,獲工學博士學位。
1997.11~2001.2 畢業留校工作。 [1] 

嚴紅革工作經歷

1997.11~2001.2 在中南大學博士畢業後留校工作。
2001.2~現在 在湖南大學材料科學與工程學院工作。 [1] 

嚴紅革學術兼職

噴射沉積技術及應用湖南省重點實驗室主任(2003.7~)
湖南省先進導電銀漿工程技術研究中心主任(2018.7~)
校教學委員會委員(2018.7~)
院教學委員會主任(2018.6~) [1] 

嚴紅革研究領域

1.高性能鋁合金、鎂合金先進製備技術
針對航空、航天、交通車輛等領域對高性能鋁合金、鎂合金的需求問題,研究合金的晶粒細化、納米沉澱相調控、織構弱化的新方法及原理,合金的強韌化新方法及原理,高性能合金的塑性加工新技術、熱處理新工藝。
2.結構與功能一體化合金及金屬基複合材料
主要研究高強高塑高阻尼鋁合金、鎂合金、鋼鐵及金屬基複合材料的先進製備技術。
3.功能性納米粉體的製備及表面改性技術
開展電子漿料、能源、催化、傳感等領域用高性能納米純金屬、合金、氧化物等納米粉體的先進製備技術及粉體表面改性技術。
4.高性能合金材料先進焊接技術及焊縫質量控制方法
重點研究鋁合金、鎂合金、高強鋼、不鏽鋼等的激光焊接、攪拌摩擦焊、電阻焊等新技術新工藝及焊縫質量控制新方法。 [1] 

嚴紅革科研成果

主持過國家863計劃項目、國家自然科學基金項目、國家自然科學基金-雲南省聯合基金重點項目、教育部博士點基金項目、教育部新世紀優秀人才資助計劃項目、湖南省傑出青年基金項目和其它部省級項目十餘項。作為主要科研人員參加的國家級和部省級科研項目有9項。 [1] 

嚴紅革學術成果

發表學術論文150餘篇,其中SCI期刊論文60餘篇。獲發明專利8項。代表性論文:
[1] Hongmei Xu, Hongge Yan, Chen Zhenhua. Mechanical and electrical properties of Al2O3/Ce0.8Y0.2O1.9 composite electrolytes. Materials Science and Engineering B, 2007, 145(1-3): 85-90
[2] Xu Hongmei, Yan Hongge, Chen Zhenhua. The flexural strength and densification behavior of Al2O3-doped Ce0.8Y0.2O1.9 electrolyte composites. Materials Science and Engineering A,2007, 447(1-2):222-226
[3] Xu Hongmei, Yan Hongge, Chen Zhenhua. Low-temperature combustion synthesis and sintering of nanosized Ce0.8Y0.2O1.9 powders. Materials Characterization, 2008, 59(3): 301-305
[4] Hongmei Xu, Hongge Yan, Chen Zhenhua. Preparation and properties of Y3+ and Ca2+ co-doped ceria electrolyte materials for ITSOFC. Solid State Sciences, 2008, 10(9): 1179-1184
[5] Zhu Su-Qin, Yan Hong-Ge, Xia Wei-Jun, Liu Ji-Zi, Jiang Jun-Feng. Influence of different deformation processing on the AZ31 magnesium alloy sheets. Journal of Materials Science, 2009, 44(14): 3800-3806
[6] Q. Guo, H. G. Yan, H. Zhang, Z. H. Chen, Z. F. Wang. Behaviour of AZ31 magnesium alloy during compression at elevated temperatures. Materials Science and Technology, 2005, 21(11): 1349-1354
[7] Xu Hongmei, Yan Hongge, Chen Zhenhua. Sintering and electrical properties of Ce0.8Y0.2O1.9 powders by citric acid- nitrate low-temperature combustion process. Journal of Power Sources, 2006, 163(1):409-414
[8] Q. Guo, H. G. Yan, Z. H. Chen, H. Zhang. Elevated Temperature Compression Behavior of Mg-Al-Zn Alloys. Materials Science and Technology, 2006, 22(6):725-728
[9] Q. Guo, H. G. Yan, Z.H. Chen, H. Zhang. Grain refinement in as-cast AZ80 Mg alloy under large strain deformation. Materials Characterization, 2007, 58(2): 162-167
[10] Y. P. Sun, H. G. Yan, Z. H. Chen, D. Chen, G. Chen. Effect of a novel sequential motion compaction process on the densification of multi-layer spray deposited 7090/SiCp composites. Journal of Materials Science, 2008, 43: 6200-6205
[11] Yu Z H, Yan H G, Gong, X. S, Quan, Y J, Chen, J H, Chen, Q. Microstructure and mechanical properties of laser welded wrought ZK21 magnesium alloy, Materials Science and Engineering A, 2009, 523(1-2): 220-225 [1] 
[12] S. Q. Zhu, H.G. Yan, J.H. Chen, Y.Z. Wu, J.Z. Liu and J. Tian. Effect of twinning and dynamic recrystallization on the high strain rate rolling process. Scripta Materialia, 2010, 63(10): 985-988
[13] Yan Hongge, Chen Jihua, Guo Qiang, Su Bin, Wu Yuanzhi. Microstructure evolutions of AZ80 magnesium alloy during multi-directional compression deformation at elevated temperature. International Journal of Materials Research (Z Metallkd.), 2010, 102(2): 1-9
[14] Yuan-Zhi Wu, Hong-Ge Yan, Ji-Hua Chen, Su-Qin Zhu, Zhi-Wen Liu, Jin Tian. Hot deformation behavior and microstructure evolution of ZK21 magnesium alloy, Materials Science and Engineering A, 2010, 527(16-17): 3670-3675
[15] Z.H.Yu, H.G.Yan, S. J. Chen, J. H. Chen, P.L.Zeng. Method for welding highly crack susceptible magnesium alloy ZK60. Science and Technology of Welding & Joining, 2010, 15(5): 354-360
[16] Z.H.Yu, H.G.Yan, J.H.Chen, Y. Z.Wu. Effect of Zn content on the microstructures and mechanical properties of laser beam-welded ZK series magnesium alloys. Journal Materials Science, 2010, 45(14):3797-3803
[17] B. Su, H.G. Yan, G. Chen, J.L. Shi, J.H. Chen, P.L. Zeng.Study on the preparation of the SiCp/Al–20Si–3Cu functionally graded material using spray deposition. Materials Science and Engineering A, 2010, 527(24-25): 6660-6665
[18] Yan H-G, Wu Y-Z, Chen J-H, Zhu S-Q, Liu Z-W, Tian J. Microstructure evolution of ZK40 magnesium alloy during high strain rate compression, Materials science and Technology. 2011, 27 (9): 1416-1421
[19] Wu Y Z, Yan H G, Chen J H, Du Y G, Zhu S Q, Su B. Microstructure and mechanical properties of ZK21 magnesium alloy processed by multiple forging at different strain rate. Materials Science and Engineering A, 2012, 556: 164-169.
[20] Zhu S Q, Yan H G, Chen J H, Wu Y Z, Su B, Du Y G, Liao X Z. Feasibility of high strain-rate rolling of magnesium alloy across a wide temperature range. Scripta Materialia, 2012, 67(4): 404-407
[21] Zhu S Q, Yan H G, Chen J H, Wu Y Z, Du Y G, Liao X Z. Fabrication of Mg-Al-Zn-Mn alloy sheets with homogeneous fine-grained structures using high strain-rate rolling in a wide temperature range. Materials Science Engineering A, 2013, 559: 765-772
[22] Wu Y Z, Yan H G, Chen J H, Zhu S Q, Su B, Zeng P L. Microstructure and mechanical properties of ZK60 alloy fabricated by multiple forging [J]. Material Science and Technology, 2013, 29(1): 54-59
[23] X. L. Chen, H. G. Yan, J. H. Chen, B. Su and Z. H. Yu. Effects of grain size and precipitation on liquation cracking of AZ61 magnesium alloy laser welding joints. Science and Technology of Welding and Joining, 2013, 18(6): 458-465
[24] Chen Jihua, Chen Zhenhua, Yan Hongge, Zhang Fuquan, Liao Kun. Effects of Sn addition on microstructure and mechanical properties of Mg-Zn-Al alloys. Journal of Alloy and Compound, 2008, 461(1-2): 209-215
[25] Chen Jihua, Chen Zhenhua, Yan Hongge, Zhang Fuquan. Microstructural characterization and mechanical properties of a Mg-6Zn-3Sn-2Al alloy. Journal of Alloy and Compound, 2009, 467(1-2): L1-L7
[26] Z.H. Chen, Y.Q. He, H.G. Yan, Z.G. Chen, X.J. Yin, G. Chen. Ambient temperature mechanical properties of Al–8.5Fe–1.3V–1.7Si/SiCP composite. Materials Science and Engineering A, 2007, 460-461: 180–185
[27]Yuan-zhi WU, Hong-ge YAN, Su-qin ZHU, Ji-hua CHEN, An-min LIU, Xian-lan LIU. Flow behavior and microstructure of ZK60 magnesium alloy compressed at high strain rate. Trans. Nonferrous Met. Soc. China, 2014, 24: 930-939
[28]Yu Haiyang, Yan Hongge, Chen Jihua. Effects of minor Gd addition on microstructures and mechanical properties of the high strain-rate rolled Mg-Zn-Zr alloys. Journal of Alloys and Compounds, 2014, 586: 757-765
[29] Z. M. Yang, H.G. Yan, J.H. Chen, B. Su, G.H. Zhang, Q. Zhao. Microstructural characterisation and liquation behaviour of laser welded joint of fine grained AZ91 magnesium alloy thin sheets. Science and Technology of Welding and Joining, 2015, 20(1), 27-34
[30]S.Q. Zhu, H.G. Yan, X.Z. Liao, S.J. Moody, G. Sha, Y.Z. Wu, S.P. Ringer. Mechanisms for enhanced plasticity in magnesium alloys. Acta Materialia, 2015, 82: 344–355
[31] Chao Chen, Jihua Chen, Hongge Yan, Bin Su, Min Song, Suqin Zhu. Dynamic precipitation, microstructure and mechanical properties of Mg-5Zn-1Mn alloy sheets prepared by high strain-rate rolling. Materials & Design, 2016, 100: 58-66
[32]Jimiao Jiang, MinSong, HonggeYan, ChaoYang, Song Ni. Deformation induced dynamic recrystallization and precipitation strengthening in an Mg-Zn-Mn alloy processed by high strain rate rolling.Materials Characterization, 2016, 121: 135-138
[33]Yang Xuanye, Yan Hongge, Chen Jihua, He Mao, Xu Feng, Zhang Zhengfu, Xu Hongmei. Solid state synthesis of ultrafine-LiCoO2 by enhanced thermal decomposition of carbonate precursors followed by double-calcining. Solid State Ionics, 2016, 289:159-167
[34]Meixin Cheng, Jihua Chena, Hongge Yan, Bin Sua, Zhaohui Yu, Weijun Xia, Xiaole Gong. Effects of minor Sr addition on microstructure, mechanical and bio-corrosion properties of the Mg-5Zn based alloy system. Journal of Alloys and Compounds, 2017, 691:95-102
[35] Feng Xu, Hongge Yan, Jihua Chen, Mao He, Zhengfu Zhang, Changling Fan,Gengshuo Liu. Improving electrochemical properties of LiCoO2by enhancing thermal decomposition of Cobalt and Lithium carbonates to synthesize ultrafine powders. Ceramics International, 2017, 43: 6494-6501
[36] Jiang Wu, Jihua Chen, Hongge Yan, Weijun Xia, Bin Su, Lang Yu, Gengshuo Liu, Min Song. Enhancing the mechanical properties of high strain rate rolled Mg–6Zn–1Mn alloy by pre- rolling. Journal of Materials Science, 2017, 52(17): 10557-10566
[37] Feng Xu, Hongge Yan, Jihua Chen, Zhengfu Zhang, Changling Fan. Improving electrochemical properties of LiNi1/3Co1/3Mn1/3O2 by enhancing thermal decomposition of carbonates to synthesize ultrafine powders. Journal of Electroanalytical Chemistry, 2018, 820: 118-122
[38] Jimiao Jiang, Jiang Wu, Song Ni, Hongge Yan, Min Song. Improving the mechanical properties of a ZM61 magnesium alloy by prerolling and high strain rate rolling. Materials Science & Engineering A, 2018, 712: 478-484
[39]Zou J K, Yan H G, Chen J H, Xia W J, Su B, Lei Y, Wu Q. Effects of Sn on microstructure and mechanical properties of as-rolled Mg-5Zn-1Mn alloy. Materials Science & Technology,
[40]Zhou B, Chen J H, Yan H G, Xia W J, Su B, Guo H, Zhu W J. To improve strength and bio-corrosion resistance of Mg-4Zn alloy via high strain rate rolling combined with double aging. Materials Letter, [1] 

嚴紅革獎勵榮譽

獲教育部技術發明一等獎1項、中國機械工業科技進步二等獎1項、其它部省級科技進步三等獎3項。 [1] 
參考資料