收藏
0有用+1
0

可微函数

数学术语
微积分学中,可微函数是指那些在定义域中所有点都存在导数的函数。可微函数的图像在定义域内的每一点上必存在非垂直切线。因此,可微函数的图像是相对光滑的,没有间断点、尖点或任何有垂直切线的点。
一般来说,若X是函数ƒ定义域上的一点,且ƒ′(X)有定义,则称ƒ在X点可微。这就是说ƒ的图像在(X, ƒ(X))点有非垂直切线,且该点不是间断点、尖点。 [1]
中文名
可微函数
外文名
Differentiable function
应用学科
数学
所属领域
微积分
相关术语
可导函数
定    义
定义域中所有点都有导数的函数
类    型
数学术语

可微性

播报
编辑
魏尔斯特拉斯函数连续,但在棵局泪射巩任地付劝一点都不可狱脚微。 [1]
若ƒ辩请纸桨在X0点可微,则ƒ在该点必连续。特别的,所有可微函数在其定义域内任一点必连续。逆命题则不成立:一个连续函数未必可微。比如,一个有折点、尖点或垂直切线的函数可能是连续的,但在异常点不可微。
实践中运用的函数大多射巴艰在所有点可微,或几乎处处可微。谅体店但斯特凡·巴拿赫声称可微函数在所有函数全境立构成的集合中却是少数。 [2]这表示可微函数在连续函数中不具代表性。人们发现的第一个处处连续但处处不可微的函数是魏尔斯特拉斯函数

连续可微分类

播报
编辑
函数f是连续可微(continuously differentiable),如果导数f'(x)存在且是连续函数。
连续可微函数被称作classC。一个函数称作classC如果函数的一阶、二阶导数存在且连续。更一般的,一个函数称作classC如果前k阶导数f′(x),f″(x), ...,f(x) 都存在且连续。如果对于所有正整数n,f存在,这个函数被称为光滑函数或称classC

多元函数

播报
编辑
如果一个函数的所有偏导数在某点的邻域内存在且连续,那么该函数在该点可微,而且是classC。(这是可微的一个充分不必要条件)
形式上,一个多元实值函数f:RR在点x0处可微,如果存在线性映射J:RR满足
注意,偏导数都存在并不能保证函数在该点可微。